首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The retina of the phalangid, Opilio ravennae, consists of retinula cells with distal rhabdomeres, arhabdomeric cells, and sheath cells. The receptive segment of retinula cells shows a clear separation into a Proximal rhabdom, organized into distinct rhabdom units formed by three or four retinula cells, and a Distal rhabdom, consisting of an uniterrupted layer of contiguous rhabdomeres. One of the cells comprising a retinula unit, the so-called distal retinula cell (DRC), has two or three branches that pass laterally alongside the rhabdom, thereby separating the two or three principal retinula cells of a unit. The two morphologically distinct layers of the receptive segment differ with respect to the cellular origin of rhabdomeral microvilli: DRC-branches contribute very few microvilli to the proximal rhabdom and develop extremely large rhabdomeres in the distal rhabdom only, causing the rhabdom units to fuse. Principal retinula cells, on the other hand, comprise the majority of microvilli of the proximal rhabdom, but their rhabdomeres diminish in the distal rhabdom. It is argued that proximal and distal rhabdoms serve different functions in relation to the intensity of incident light.In animals fixed 4 h after sunset, pigment granules retreat from the distal two thirds of the receptive segment. A comparison of retinae of day- and night-adapted animals shows that there is a slight (approximately 15%) increase in the cross-sectional area of rhabdomeral microvilli in dark-adapted animals, which in volume corresponds to the loss of pigment granules from the receptive segment. The length of the receptive segment as well as the pattern and shape of rhabdom units, however, remain unchanged.Each retinula unit is associated with one arhabdomeric cell. Their cell bodies are located close to those of retinula cells, but are much smaller and do not contain pigment granules. The most remarkable feature is a long, slender distal dendrite that extends up to the base of the fused rhabdom where it increases in diameter and develops a number of lateral processes interdigitating with microvilli of the rhabdom. The most distal dendrite portion extends through the center of the fused rhabdom and has again a smooth outline. All dendrites end in the distal third of the proximal rhabdom and are never present in the layer of the contiguous distal rhabdom. Arhabdomeric cells are of essentially the same morphology in day- and night-adapted animals. They are interpreted as photoinsensitive secondary neurons involved in visual information-processing that channel current collected from retinula cells of the proximal rhabdom along the optic nerve. A comparison is made with morphological equivalents of these cells in other chelicerate species.  相似文献   

2.
In many insect species, a dorsal rim area (DRA) in the compound eye is adapted to analyze the sky polarization pattern for compass orientation. In the desert locust Schistocerca gregaria, these specializations are particularly striking. The DRA of the locust consists of about 400 ommatidia. The facets have an irregular shape, and pore canals are often present in the corneae. Screening pigment is missing in the region of the dioptric apparatus suggesting large receptive fields. The rhabdoms are shorter, but about four times larger in cross-section than the rhabdoms of ordinary ommatida. Eight retinula cells contribute to the rhabdom. The microvilli of retinula cell 7 and of cells 1, 2, 5, 6, 8 are highly aligned throughout the rhabdom and form two blocks of orthogonal orientation. The microvilli in the minute rhabdomeres of retinula cells 3 and 4, in contrast, show no particular alignment. As in other insect species, microvillar orientations are arranged in a fan-like pattern across the DRA. Photoreceptor axons project to distinct areas in the dorsal lamina and medulla. The morphological specializations in the DRA of the locust eye most likely maximize the polarization sensitivity and suggest that the locust uses this eye region for analysis of the sky polarization pattern.  相似文献   

3.
Larvae of the weakly blue‐luminescent fungus gnat Keroplatus nipponicus possess on either side of their heads a small black stemmatal eye with a plano‐convex lens approximately 25 μm in diameter. In total, 12–14 retinula cells give rise to a centrally fused rhabdom of up to 8 μm in diameter. The rhabdom's constituent microvilli, approximately 70 nm in width, are roughly orthogonally oriented, a requirement for polarization sensitivity. Screening pigment granules are abundant in the retinula cells and measure at least 1 μm in diameter. In comparison with the stemmatal eye of the brightly luminescent Arachnocampa luminosa, that of K. nipponicus is considerably smaller with a poorer developed lens and a rhabdom that is less voluminous, but possesses wider microvilli. Although the larval eye of K. nipponicus can be expected to be functional, as the larvae react to light with a behavioural response, the eyes are probably mainly involved in the detection of ambient light levels and not, as in A. luminosa, also in responding to the luminescence of nearby conspecifics.  相似文献   

4.
龟纹瓢虫成虫的复眼形态及其显微结构   总被引:3,自引:1,他引:3  
利用光镜、组织切片法观察了龟纹瓢虫Propylaea japonica(Thunberg)成虫的复眼形态及其显微结构。结果如下:(1)头正前方观,复眼外形似半球,且后方稍向内合拢。每个复眼约包括630个小眼。(2)每个小眼是由1套屈光器(1个角膜和1个晶锥)、6至8个小网膜细胞及其特化产生的视杆和基细胞等几部分组成。晶体周围及小网膜色素细胞内均含有丰富的色素颗粒。(3)小眼整体纵切显示,其上、下段色素颗粒分布相对较多,中段分布较少。(4)明、暗适应状态对小眼的色素颗粒分布有影响,性别对其分布无明显影响。明适应状态下,其色素颗粒较均匀地分布于视杆两侧上下,暗适应状态时色素颗粒则主要分布在视杆部位的上侧,显示其具有一定的重叠眼性质;而在相同的明、暗适应状态下其雌、雄成虫复眼的色素颗粒分布间无明显差异。  相似文献   

5.
Observations of the infrared deep pseudopupil, optical determinations of the corneal nodal point, and histological methods were used to relate the visual fields of individual rhabdomeres to the array of ommatidial optical axes in four insects with open rhabdoms: the tenebrionid beetle Zophobas morio, the earwig Forficula auricularia, the crane fly Tipula pruinosa, and the backswimmer Notonecta glauca.The open rhabdoms of all four species have a central pair of rhabdomeres surrounded by six peripheral rhabdomeres. At night, a distal pigment aperture is fully open and the rhabdom receives light over an angle approximately six times the interommatidial angle. Different rhabdomeres within the same ommatidium do not share the same visual axis, and the visual fields of the peripheral rhabdomeres overlap the optical axes of several near-by ommatidia. During the day, the pigment aperture is considerably smaller, and all rhabdomeres share the same visual field of about two interommatidial angles, or less, depending on the degree of light adaptation. The pigment aperture serves two functions: (1) it allows the circadian rhythm to switch between the night and day sampling patterns, and (2) it works as a light driven pupil during the day.Theoretical considerations suggest that, in the night eye, the peripheral retinula cells are involved in neural pooling in the lamina, with asymmetric pooling fields matching the visual fields of the rhabdomeres. Such a system provides high sensitivity for nocturnal vision, and the open rhabdom has the potential of feeding information into parallel spatial channels with different tradeoffs between resolution and sensitivity. Modification of this operational principle to suit a strictly diurnal life, makes the contractile pigment aperture superfluous, and decreasing angular sensitivities together with decreasing pooling fields lead to a neural superposition eye.Abbreviations DPP deep pseudopupil - LMC large monopolar cell  相似文献   

6.
The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata.  相似文献   

7.
Summary The fine structure of an ommatidium of a skipper butterfly, Parnara guttata, has been studied using the electron microscope. Each ommatidium has nine retinula cells, which were classified into three groups: two distal, six medial and one basal retinula cells. The rhabdomeres of the distal retinula cells are localized in the distal part of the rhabdom, while those of the six medial retinula cells appear throughout most of the rhabdom. The rhabdomere of the basal retinula cell occupies only the basal part of the rhabdom. The rhabdomeres of four medial cells are constructed of parallel microvilli, while fan-like microvilli form the rhabdomeres of other two medial retinula cells. The distal and basal retinula cells have rhabdomeres consisting of both parallel and fan-like microvilli. This is the first time the construction of the rhabdomeres of the distal and basal retinula cells has been described in such fine detail for a skipper butterfly. Nine retinula cell axons of each ommatidium extend to the first neuropile of the optic lobe, the lamina ganglionaris. No difference was found in the number of retinula cells of an ommatidium or the shape of the rhabdom between the dorsal and ventral regions of the compound eye.  相似文献   

8.
Summary The superposition eye of the cockchafer, Melolontha melolontha, exhibits the typical features of many nocturnal and crepuscular scarabaeid beetles: the dioptric apparatus of each ommatidium consists of a thick corneal lens with a strong inner convexity attached to a crystalline cone, that is surrounded by two primary and 9–11 secondary pigment cells. The clear zone contains the unpigmented extensions of the secondary pigment cells, which surround the cell bodies of seven retinula (receptor) cells per ommatidium and a retinular tract formed by them. The seven-lobed fused rhabdoms are composed by the rhabdomeres of the receptor cells 1–7. The rhabdoms are optically separated from each other by a tracheal sheath around the retinulae. The orientation of the microvilli diverges in a fan-like fashion within each rhabdomere. The proximally situated retinula cell 8 does not form a rhabdomere. This standard form of ommatidium stands in contrast to another type of ommatidium found in the dorsal rim area of the eye. The dorsal rim ommatidia are characterized by the following anatomical specializations: (1) The corneal lenses are not clear but contain light-scattering, bubble-like inclusions. (2) The rhabdom length is increased approximately by a factor of two. (3) The rhabdoms have unlobed shapes. (4) Within each rhabdomere the microvilli are parallel to each other. The microvilli of receptor 1 are oriented 90° to those of receptors 2–7. (5) The tracheal sheaths around the retinulae are missing. These findings indicate that the photoreceptors of the dorsal rim area are strongly polarization sensitive and have large visual fields. In the dorsal rim ommatidia of other insects, functionally similar anatomical specializations have been found. In these species, the dorsal rim area of the eye was demonstrated to be the eye region that is responsible for the detection of polarized light. We suggest that the dorsal rim area of the cockchafer eye subserves the same function and that the beetles use the polarization pattern of the sky for orientation during their migrations.  相似文献   

9.
The compound eyes of the wingless adults of the Madagascar ‘hissing cockroach’Gromphadorhina portentosa Sachum, 1853 were examined by light and electron microscopy. Each eye contains 2 400‐2 500 mostly hexagonal facets. However, irregularities affecting both shape and size of the ommatidia are relatively common, especially towards the margins of the eye. An individual ommatidium of this eucone type of apposition eye contains eight retinula cells, which give rise to a centrally‐fused, tiered rhabdom. The distal end of the latter is funnel‐shaped and accommodates the proximal end of the cone in its midst. Further below, the rhabdom (then formed by the rhabdomeres of four retinula cells) assumes a squarish profile with microvilli aligned in two directions at right‐angle to each other. Cross sections through the proximal regions of the rhabdom display triangular rhabdom outlines and microvilli (belonging to 3‐4 retinula cells different from those involved in the squarish more distal rhabdom) that run in three directions inclined to one another by 120°. Overall the organization of the eye conforms to the orthopteroid pattern and particularly closely resembles that of the American cockroach Periplaneta americana. However, since G. portentosa possesses fewer ommatidia, this could be a consequence of its inability to fly. On the other hand, the large size of the facets and the voluminous rhabdoms suggest considerable absolute sensitivity and an ability to detect the plane of linearly polarized light. Based on the pattern of microvillus orientations in combination with the crepuscular lifestyle G. portentosa leads and the habitat it occurs in, the prediction is made that this insect uses its green receptors for e‐vector discrimination in the environment of down‐welling light that reaches the forest floor.  相似文献   

10.
THE MICROSTRUCTURE OF THE COMPOUND EYES OF INSECTS   总被引:2,自引:5,他引:2       下载免费PDF全文
The apposition eyes of two diurnal insects, Sarcophaga bullata (Diptera) and Anax junius (Odonata), have been examined with the electron microscope. In the latter case only the rhabdom is described. The rhabdom of the fly consists of a central matrix and seven rhabdomeres, one for each retinula cell. The rhabdomeres show an ordered internal structure built up of transverse tubes, hexagonal in cross-section. These slender compartments running the width of the rhabdomere are 370 A in diameter. After fixation with osmium tetroxide the walls of the compartments are more electron dense than the interiors. The retinula cells contain mitochondria, and pigment granules smaller than those found in the pigment cells. These granules tend to cluster close behind the membranes which separate the retinula cells from their rhabdomeres. The rhabdom of the dragonfly is a single structure which appears to be composed of three fused "rhabdomeres," each similar to a rhabdomere of Sarcophaga. Reasons are given for believing that the rhabdom may be the site of photoreception, as well as the organ for analyzing plane-polarized light, as suggested by other workers.  相似文献   

11.
The lateral lens eye of adult Craterostigmus tasmanianus Pocock, 1902 (a centipede from Australia and New Zealand) was examined by light and electron microscopy. An elliptical, bipartite eye is located frontolaterally on either side of the head. The nearly circular posterior part of the eye is characterized by a plano-convex cornea, whereas no corneal elevation is visible in the crescentic anterior part. The so-called lateral ocellus appears cup-shaped in longitudinal section and includes a flattened corneal lens comprising a homogeneous and pigmentless epithelium of cornea-secreting cells. The retinula consists of two kinds of photoreceptive cells. The distribution of the distal retinula cells is highly irregular. Variable numbers of cells are grouped together in multilayered, thread-like unions extending from the ventral and dorsal margins into the center of the eye. Around their knob-like or bilobed apices the distal retinula cells give rise to fused polymorphic rhabdomeres. Both everse and inverse cells occur in the distal retinula. Smaller, club-shaped proximal retinula cells are present in the second (limited to the peripheral region) and proximal third of the eye, where they are arranged in dual cell units. In its apical region each unit produces a small, unidirectional rhabdom of interdigitating microvilli. All retinula cells are surrounded by numerous sheath cells. A thin basal lamina covers the whole eye cup, which, together with the distal part of the optic nerve, is wrapped by external pigment cells filled with granules of varying osmiophily. The eye of C. tasmanianus seemingly displays very high complexity compared to many other hitherto studied euarthropod eyes. Besides the complex arrangement of the entire retinula, the presence of a bipartite eye cup, intraocellar exocrine glands, inverse retinula cells, distal retinula cells with bilobed apices, separated pairs of proximal retinula cells, medio-retinal axon bundles, and the formation of a vertically partitioned, antler-like distal rhabdom represent apomorphies of the craterostigmomorph eye. These characters therefore collectively underline the separate position of the Craterostigmomorpha among pleurostigmophoran centipedes. The remaining retinal features of C. tasmanianus agree with those known from other chilopod eyes and, thus, may be considered plesiomorphies. Characters like the unicorneal eye cup, sheath cells, and proximal rhabdomeres with interdigitating microvilli were already present in the ground pattern of the Pleurostigmophora. Other retinal features were developed in the ancestral lineage of the Phylactometria (e.g., large elliptical eyes, external pigment cells, polygonal sculpturations on the corneal surface). The homology of all chilopod eyes (including Notostigmophora) is based principally on the possession of a dual type retinula.  相似文献   

12.
Summary In the dark-adapted eye of the cockroachPeriplaneta, the fused rhabdom is surrounded by a clear watery palisade; in the light-adapted eye this is replaced by pigment. The refractive indices of the rhabdom and its surround have been measured. The physiological effects of this change in structure has been analysed by the electromagnetic theory of light guides. The optical constants are theoretically consistent with the measured tenfold change in sensitivity and changes in acceptance angle of the retinula cells from 6.7 ° ¦(dark-adapted) to 2.4 ° (light-adapted).  相似文献   

13.
Summary In Streetsia challengeri left and right eyes have fused and become a single cylindrical photoreceptor, which occupies the basal half of a forward directed head projection. This unusual compound eye consists of approximately 2500 ommatidia, which are arranged in such a way that the animal has almost circumferential vision, but cannot look ahead or behind. It is thought that the eye operates on light-guide principles, and that the crystalline cones are the major dioptric component. Ommatidia in anterior-posterior rows show a greater overlap of visual fields than dorso-ventrally arranged ommatidia. Cone layer and retinula are separated by a 4 m thick screen-membrane, which contains tiny pigment granules of 0.15 m diameter. Cells of unknown function and origin, containing unusual multitubular organelles, are regularly found near the proximal ends of the crystalline cone threads. The twisted rhabdoms measure 18–20 m in diameter, and consist of microvilli 0.05 m in width, which belong to five retinula cells and which show no trace of disintegration. The position of interommatidial screening pigment, the density of retinula cell vesicles and inclusions, and the narrowness of the perirhabdomal space all suggest that the eyes have been light-adapted at the time of fixation for electron microscopy. The retinula cell nuclei lie on the proximal side of the heavily pigmented basement membrane. A tapetum or basal retinula cells are not developed. It is concluded that the eye optimally combines acuity with sensitivity, and that for distance estimation parallax may be important.Address until January 25th 1978: Scott Base, Ross Dependency, Antarctica (C/-Chief Post Office, Christchurch, New Zealand)  相似文献   

14.
The compound eye of the crab hemigrapsus sanguineus undergoes daily changes in morphology as determined by light and electron microscopy, both in the quantity of chromophore substances studied by HPLC and in visual sensitivity as shown by electrophysiological techniques. 1. At a temperature of 20 degrees C, the rhabdom occupation ratio (ROR) of an ommatidial retinula was 11.6% (maximum) at midnight, 8.0 times larger than the minimum value at midday (1.4%). 2. Observations by freeze-fracture revealed that the densities of intra-membranous particles (9-11 nm in diameter) of rhabdomeric membrane were ca. 2000/microns 2 and ca. 3000/microns 2 for night and daytime compound eyes, respectively. 3. Screening pigment granules migrated longitudinally and aggregated at night, but dispersed during the day. Reflecting pigment granules migrate transversally in the proximal half of the reticula layer i.e. cytoplasmic extensions containing reflecting pigment granules squeeze between neighbouring retinula cells causing optical isolation (Fig. 4). Thus the screening pigment granules within the retinula cells show longitudinal migration and radial movement so that the daytime rhabdoms are closely surrounded by the pigment granules. 4. At 20 degrees C, the total amount of chromophore of the visual pigment (11-cis and all-trans-retinal) was 1.4 times larger at night than during the day i.e. 46.6 pmol/eye at midnight and 33.2 pmol/eye at midday. Calculations of the total surface area of rhabdomeric membrane, total number of intra-membranous particles in rhabdomeric membrane and the total number of chromophore molecules in a compound eye, indicate that a considerable amount of chromophore-protein complex exists outside the rhabdom during the day. 5. The change in rhabdom size and quantity of chromophore were highly dependent on temperature. At 10 degrees C both rhabdom size and amount of chromophore stayed close to daytime levels throughout the 24 hours. 6. The intracellularly determined relative sensitivity of the dark adapted night eye to a point source of light was about twice as high as the dark-adapted day eye. Most of the increase in the sensitivity is attributed primarily to the effect of reflecting pigment migration around the basement membrane and, secondarily, to the changes in the amount and properties of the photoreceptive membrane. The results form the basis of a detailed discussion as to how an apposition eye can function possibly as a night-eye.  相似文献   

15.
采用组织切片法光镜下观察黑翅土白蚁Odontotermes formosanus(Shiraki)有翅成虫的复眼形态结构及光、暗适应条件下色素颗粒移动的规律。结果如下:(1)头正前方观,复眼外部形态略呈圆形。(2)有翅成虫复眼类型属于并列像眼,每只复眼约由360个小眼组成。(3)每个小眼是由1套屈光器(1个角膜和1个晶锥)、小网膜色素细胞、视杆和基细胞等几部分组成。小网膜色素细胞内均含有丰富的色素颗粒。(4)在光适应条件状态下,屈光器及视杆周围的色素颗粒主要分布在视杆部位的上侧,暗度适应条件状态时则较均匀地分布于视杆两侧上下;性别对色素颗粒分布无明显影响。  相似文献   

16.
Stemmata are peculiar visual organs of most larvae in holometabolous insects. In Hymenoptera, Symphyta larvae exclusively possess a pair of stemmata, whose cellular organizations have not been thoroughly elucidated to date. In this paper, the morphology and fine structure of stemmata were investigated in the large rose sawfly Arge pagana (Panzer, 1798) using light and electron microscopy. The larvae possess a pair of stemmata, which belong to the “unicorneal composite eye” or single-chamber stemmata. Each stemma is composed of a biconvex cornea lens, a layer of corneagenous cells, numerous pigment cells, and hundreds of retinula cells. According to the number of retinula cells forming a rhabdom, the stemma can be divided into two regions, the larger Region I and the smaller Region II. The former occupies the largest area of the stemma and contains the majority of rhabdoms, each of which is formed by the rhabdomeres of eight retinula cells. The latter occupies a narrow posterior margin, where each rhabdom consists of nine retinula cells. Based on the different cellular organizations of rhabdoms, the stemma of Argidae is likely developed by the fusion of two types of ommatidial units.  相似文献   

17.
Among ants, Cataglyphis bicolor shows the best performance in optical orientation. Its eye is of the apposition type with a fused rhabdom. Morphological studies on the general struture of the eye as well as the effect of light have been carried out with transmission and scanning electron microscopy. An ommatidium is composed of a dioptric apparatus, consisting of a cornea, corneal process and a crystalline cone, the sensory retinula, which is made up of eight retinula cells in the distal half and of an additional ninth one in the proximal half. The ommatidia are separated from each other by two primary pigment cells, which surround the crystalline cone and an average of 12 secondary pigment cells, which reach from cornea to the basement membrane. The eye of Cataglyphis bicolor possesses a light intensity dependent adaptation mechanism, which causes a radial and distal movement of the pigment granules within the retinula cells and a dilatation of cisternae of the ER along the rhabdom. Until now, no overall order in arrangement of retinula cells or direction of microvilli has been found from ommatidium to ommatidium. Such an order, however, must exist, either on the retina or the lamina level, since we have proven the ant's capacity for polarized light analysis.  相似文献   

18.
The galatheid squat lobster, Munida rugosa, has compound eyes of the reflecting superposition type in which a distal cone cell layer and a proximal rhabdom layer are separated by an extensive clear zone. The eye is shown to have certain unique features. In all other reflecting superposition eyes, the clear zone is traversed by crystalline tracts formed by the cone cells. In M. rugosa a thin distal rhabdom thread, formed by the eighth retinula cell, connects the cones to the proximal fusiform rhabdoms. The cytoplasm of the other retinula cells also crosses the clear zone in a complex pattern. Fully light-adapted ommatidia are optically isolated by limited migrations of distal shielding pigments. A reflecting pigment multilayer lines each cone to facilitate the formation of a superposition image. This also shows a light-induced change which may limit the acceptance angle of the eye during light adaptation.  相似文献   

19.
Summary Except for very special fused rhabdoms, e. g. those with orthogonal microvilli like the worker bee, the direction of the electric vector E of linear polarized light necessary for a maximum response from a retinula cell is not parallel (or perpendicular) to the microvilli of the recorded cell. This is because the rhabdomeres of a fused rhabdom are optically coupled, i. e. the properties of each rhabdomere influence the manner in which light is transmitted down the composite rhabdom structure. A rhabdom is analogous to a non-uniform absorbing optical crystal. Such a crystal has two coordinate (optical) axes along which E remains linear polarized as it propagates. Only when the microvilli of the recorded cell are parallel to one of these axes will the direction ofE for maximum retinula cell response be parallel to the microvilli. The locust-type of rhabdom is used as an example.  相似文献   

20.
Summary The compound eye of Psychoda cinerea comprises two types of ommatidia, arranged so as to divide the retina into distinct dorsal and ventral regions. The P-type ommatidium, in the ventral part of the eye, differs fundamentally from the other dipteran ommatidia so far described, and is regarded as a primitive ommatidium. The acone dioptric apparatus is the same in both types, with a spherical lens and four Semper cells, the processes of which expand below the rhabdom to form a ring of pigment sacs. Only the distal region of the rhabdom is surrounded by a continuous ring of screening pigment, formed by 2 primary and 12–16 secondary pigment cells. The highly pigmented retinula cells penetrate the basement membrane proximally at about the level of their nuclei; in this region they are separated from the hemolymph by glial elements. The rhabdomeres R1–6 are fused to form a tube. The two types of ommatidia are defined by the arrangement of the retinula cells R7/8: in the T type the central rhabdomeres are one below the other, in the usual tandem position, whereas in the P type only R8 is central, with R7 in the peripheral ring. In the proximal region of the retina, retinula cells with parallel microvilli in neighboring ommatidia are joined in rows by lateral processes from the R8 cells. All the rhabdomeres are short and not twisted, which suggests that the retinula cells are highly sensitive to direction of polarization. The eye can adapt by a number of retinomotor processes. These findings, together with observations of behavior, imply that the psychodids have well-developed visual abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号