首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm-egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in five replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly-coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters.  相似文献   

2.
Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan''s theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results.  相似文献   

3.
Sperm limitation may be an important selective force influencing gamete traits such as egg size. The relatively inexpensive extracellular structures surrounding many marine invertebrate eggs might serve to enhance collision rates without the added cost of increasing the egg cell. However, despite decades of research, the effects of extracellular structures on fertilization have not been conclusively documented. Here, using the sea urchin Lytechinus variegatus, we remove jelly coats from eggs, and we quantify sperm collisions to eggs with jelly coats, eggs without jelly coats, and inert plastic beads. We also quantify fertilization success in both egg treatment groups. We find that sperm-egg collision rates increase as a function of sperm concentration and target size and that sperm are not chemotactically attracted to eggs nor to jelly coats in this species. In fertilization assays, the presence of the jelly coat is correlated with a significant but smaller-than-expected improvement in fertilization success. A pair of optimality models predict that, despite the large difference in the energetic value of egg contents and jelly material, the presence of the jelly coat does not diminish selection for larger egg cell size when sperm are limiting.  相似文献   

4.
The optimal trade-off between offspring size and number can depend on details of the mode of reproduction or development. In marine organisms, broadcast spawning is widespread, and external coats are a common feature of spawned eggs. Egg jelly coats are thought to influence several aspects of fertilization and early development, including the size of the target for sperm, fertilization efficiency, egg suspension time, polyspermy, embryo survival, and fecundity. These costs and benefits of investment in jelly result in trade-offs that can influence optimal reproductive allocation and the evolution of egg size. I develop an optimization model that sequentially incorporates assumptions about the function of egg coats in fertilization. The model predicts large variation in coat size and limited variation in ovum size under a broad range of conditions. Heterogeneity among spawning events further limits the range of ovum sizes predicted to evolve under sperm limitation. In contrast, variation in larval mortality predicts a broad range of optimal ovum sizes that more closely reflects natural variation among broadcast-spawning invertebrates. By decoupling physical and energetic size, egg coats can enhance fertilization, maintain high fecundity, and buffer the evolution of ovum size from variation in spawning conditions.  相似文献   

5.
Egg sizes of marine invertebrates vary greatly, both within and between species. Among the proposed causes of this are a trade-off between egg size, egg number and survival probability of offspring, and a selection pressure exerted by sperm limitation during external fertilization. Although larger eggs are indeed a larger target for sperm, producing larger eggs also implies making fewer of them. There has been discussion about whether sperm limitation can (theoretically) and does (in nature) select for larger egg size than under ad libitum sperm. In one specific model, based on a particular fertilization kinetics model and an empirically derived mortality function, the theoretical possibility of a negative shift in optimal egg size with sperm concentration was demonstrated. Here we present a generalized analytical model to explore the effects of survival and fertilization probabilities on optimal egg size. It is demonstrated that incorporating fertilization kinetics greatly increases the scope for intermediate optimal egg size, as opposed to eggs of minimal or maximal size. Second, we present a general analytical qualitative solution to the question whether optimal egg size depends on sperm concentration. It is shown that, under the condition that an intermediate optimal egg size exists, this qualitative outcome of the model (positive, negative or no relation between optimal egg size and sperm limitation) depends on the structure of the fertilization kinetics part of the model. Finally, we evaluate fertilization kinetics models with respect to the general solution, using two previously published kinetics models ('Don Giovanni' and 'Don Ottavio') and a novel alteration of one of them in which sperm concentration covaries with egg concentration (Don Ottavio 'tango'). For all three models the relationship between optimal egg size and sperm concentration is shown to be always negative. This paper thus shows how biologically realistic relationships between egg size on the one hand and survival and fertilization probability on the other hand predict optimal egg size to be intermediate, and that this optimum is in general expected to increase when sperm become more limiting.  相似文献   

6.
In marine invertebrates that spawn by simply releasing their gametes into the water (free-spawning), fertilization success likely is often limited by low sperm concentrations, due to dispersion of mates and dispersal of gametes by water movements. Production of large, low density eggs might be advantageous when sperm concentrations consistently are low, because large target size might increase egg/sperm encounters, and more low than high density eggs could be produced per clutch. Although average fertilization success in the labrid Thalassoma bifasciatum is 95% in both group spawns (in which multiple males compete for fertilizations by producing large quantities of sperm) and pair (mono-male) spawns, it is slightly lower in pair spawns, due to low level sperm limitation that arises because pair-spawning males release near the minimum number of sperm necessary for maximum fertilization. I examined whether variation in egg size and content in T. bifasciatum and other free-spawning fishes is related to variation in spawning mode, to assess whether compensatory production of large, low-density eggs might be contributing to high fertilization success in pair spawns. I found no difference between the volume or density of eggs of (1) pair- and group-spawning females of T. bifasciatum, or (2) pair-and group-spawning congeneric species of labrids, scarids, and serranids, or (3) labrids and scarids with vigorous, rapid spawning movements (which could turbulently diffuse gamete clouds) and those with slow movements. Further, egg density does not decline with increasing egg volume among those fishes. Assuming that egg size can affect fertilization success, then sperm limitation seems unlikely to represent a significant problem for pair-spawning T. bifasciatum, probably because mates place their vents close together during gamete release. The situation regarding sperm limitation in other fishes, and effects of environmentally generated water turbulence on it, are less clear. Interspecific variation in the size and content of these fishes' eggs may relate to provisioning of offspring for different larval life-histories.  相似文献   

7.
In numerous species, egg chemoattractants play a critical role in guiding sperm towards unfertilized eggs (sperm chemotaxis). Until now, the known functions of sperm chemotaxis include increasing the effective target size of eggs, thereby promoting sperm-egg encounters, and facilitating species recognition. Here, we report that in the broadcast spawning mussel, Mytilus galloprovincialis, egg chemoattractants may play an unforeseen role in sexual selection by enabling sperm to effectively 'choose' between the eggs of different conspecific females. In an initial experiment, we confirmed that sperm chemotaxis occurs in M. galloprovincialis by showing that sperm are attracted towards unfertilized eggs when given the choice of eggs or no eggs in a dichotomous chamber. We then conducted two cross-classified mating experiments, each comprising the same individual males and females crossed in identical male × female combinations, but under experimental conditions that offered sperm 'no-choice' (each fertilization trial took place in a Petri dish and involved a single male and female) or a 'choice' of a female's eggs (sperm were placed in the centre of a dichotomous choice chamber and allowed to choose eggs from different females). We show that male-by-female interactions characterized fertilization rates in both experiments, and that there was remarkable consistency between patterns of sperm migration in the egg-choice experiment and fertilization rates in the no-choice experiment. Thus, sperm appear to exploit chemical cues to preferentially swim towards eggs with which they are most compatible during direct sperm-to-egg encounters. These results reveal that sperm differentially select eggs on the basis of chemical cues, thus exposing the potential for egg chemoattractants to mediate mate choice for genetically compatible partners. Given the prevalence of sperm chemotaxis across diverse taxa, our findings may have broad implications for sexual selection in other mating systems.  相似文献   

8.
When the availability of sperm limits female reproductive success, competition for sperm, may be an important broker of sexual selection. This is because sperm limitation can increase the variance in female reproductive success, resulting in strong selection on females to compete for limited fertilization opportunities. Sperm limitation is probably common in broadcast-spawning marine invertebrates, making these excellent candidates for investigating scramble competition between broods of eggs and its consequences for female reproductive success. Here, we report our findings from a series of experiments that investigate egg competition in the sessile, broadcast-spawning polychaete Galeolaria caespitosa. We initially tested whether the order in which eggs encounter sperm affects their fertilization success at two ecologically relevant current regimes. We used a split-clutch-split--ejaculate technique to compare the fertilization success of eggs from individual females that had either first access (competition-free treatment) or second access (egg competition treatment) to a batch of sperm. We found that fertilization success depended on the order in which eggs accessed sperm; eggs that were assigned to the competition-free treatment exhibited significantly higher fertilization rates than those assigned to the egg competition treatment at both current speeds. In subsequent experiments we found that prior exposure of sperm to eggs significantly reduced both the quantity and quality of sperm available to fertilize a second clutch of eggs, resulting in reductions in fertilization success at high and low sperm concentrations. These findings suggest that female traits that increase the likelihood of sperm-egg interactions (e.g. egg size) will respond to selection imposed by egg competition.  相似文献   

9.
Evolutionary biologists generally invoke male competition and female choice as mechanisms driving sexual selection. However, in broadcast-spawning organisms sperm may be limiting and females may compete, in the Darwinian sense, for increased mating success. In this study, I investigate how species differences in egg and sperm traits result in different patterns of fertilization among three closely related sea urchins (Strongylocentrotus purpuratus, S. franciscanus, and S. droebachiensis). Field studies demonstrate that all three species achieve similar percentages of eggs fertilized when eggs and sperm are released simultaneously. However, when sperm must disperse before encountering eggs, differences arise among species such that those with the smaller eggs and faster but shorter-lived sperm achieve relatively fewer fertilizations than do species with larger eggs and slower but longer-lived sperm. A field hybridization experiment, field estimates of sperm dispersal, correlations of egg size to field rates of fertilization, laboratory studies of fertilization kinetics, and a simulation model all suggest that it is attributes of the egg (probably egg size) that are responsible for the differences. These patterns of fertilization match the species' patterns of dispersion; species that do well only when sperm and eggs are released in close proximity are more aggregated, species that do relatively well when sperm and eggs are released farther apart are more dispersed. These results are consistent with the notion that eggs of different species are adapted to maximize reproductive success under different degrees of sperm limitation and suggest that male competition and female choice may not be an appropriate dichotomy in broadcast-spawning organisms.  相似文献   

10.
Models of fertilization kinetics rely upon estimates of the swimming velocity of sperm to predict collision rates between egg and sperm. Most investigators measure sperm swimming velocity without accounting for the helical motion of sperm, thereby obtaining an inflated estimate of the velocity with which sperm approach eggs. In turn, models of fertilization predict inflated rates of sperm/egg collision. I observed sea urchin sperm colliding with eggs, quantified the rate of sperm/egg collision, and measured sperm velocity as a component of the helix through which they swim. I also adjusted the "target size" of eggs to reflect the diameter of the helix. My estimate of sperm swimming velocity is an order of magnitude lower than other estimates for the same species. By using helical parameters in fertilization kinetics models and accounting for dead sperm in laboratory trials, I was able to accurately predict lower rates of sperm/egg collision. Moreover, making these adjustments in the model increased the estimated proportion of sperm that initiate fertilization by 6- to 7-fold, suggesting that a better understanding of sperm swimming might lead to a more complete understanding of fertilization biology and natural selection on gamete traits.  相似文献   

11.
Traditionally, broadcast spawning and planktonic larvae have been considered the plesiomorphic ‘ground plan’ for the Polychaeta and other metazoan groups. To assess whether this reproductive mode is in fact ‘primitive’, the study of monophyletic groups with various reproductive modes should be informative. A large range of body sizes would allow testing the ideas that aspects of reproductive mode may be functionally constrained. The family Sabellidac is one such group, with sexual reproductive modes ranging from broadcast spawning to intratubular brooding to ovovivi-parity, and a body size range over more than five orders of magnitude. Sabellids have previously been the subject of detailed cladistic analyses (Fitzhugh 1989, 1991); here we introduce several new characters based on morphology of reproductive structures. Larval development in four brooding sabellid species is also described with the aim of introducing new characters for future systematic analyses. Our cladistic analysis of sabellid genera suggests that gonochorism and brooding of direct-developing larvae are plesiomorphic in the Sabellidae, with external fertilization and swimming larvae limited to apomorphie clades in the subfamily Sabellinae. The presence of sperm with elongate heads may be correlated with the presence of intratubular brooding, though an adequate causal explanation for this relationship can not yet be presented. The concept that ‘modified’ sperm must be derived from ‘primitive’ sperm is shown to be false, with ‘modified’ sperm being plesiomorphic for the Sabellidae, from which ‘primitive’ sperm is derived in apomorphic Sabellinae. All sabellids have lecithotrophic development and appear to be phylogenetically constrained in this regard. Data gathered on body size and reproductive variables in the Sabellidac suggests the following (when phylogenetic effects are not controlled): (1) egg number and total egg volume are significantly correlated with body size, with small animals having fewer, larger eggs than large animals; (2) individual egg volume is not correlated with body size; (3) reproductive mode is significantly correlated with body size; intratubular brooders tend to be small-bodied, whereas broadcast spawners are large. However when the effect of body size is controlled for, then (4) egg number, egg volume and total egg volume all vary significantly with reproductive mode. Broadcast spawners expel a large number of small eggs for a high total egg volurne. Intratubular brooders have a few relatively large eggs for a small total egg volume. When statistics arc performed using phylogenetically independent contrasts there is a significant correlation between total egg volume and body size but not for egg number and body size. The effect of non-independence (due to phylogeny) of our data needs to be more fully controlled in future analyses but methods of incorporating continuous data into cladistic analyses should also be investigated. We show that some predictions can be made about reproductive mode based on body size but ad hoc patterns of reproductive character-state transformation should not be made independent of empirical hypotheses of phylogenetic relationship. Further studies of this kind throughout the Annelida are needed to determine the plesiomorphic reproductive mode for the phylum.  相似文献   

12.
It is suggested that sperm competition (competition between the sperm from two or more males over the fertilization of ova) may account for the fact that sperm are so small and so numerous. In the entire absence of sperm competition, selection may favour an increase in sperm size so that the sperm contributes nutriment to the subsequent viability and success of the zygote. However, an extremely low incidence of sperm competition is adequate to prevent sperm size increasing. Vertebrate sperm should remain at minimal size provided that double matings (one female mated by two males) occur more often than about 4 times the ratio of sperm size: ovum size. The classical theory that sperm are small simply because of the difficulties of ensuring that ova do get fertilized may also explain sperm size, and both effects (sperm competition and ensuring fertilization) are likely to contribute to the stability of anisogamy. Large numbers of sperm can be produced because sperm are tiny and the optimal allocation of reproductive reserves to ejaculates is not trivially small even when double matings are rather rare. It is suggested that of its total mating effort, a male vertebrate should spend a fraction on sperm that is roughly equivalent to a quarter of the probability of double mating.  相似文献   

13.
Several lineages have independently evolved from isogamy (all sexes producing similar gametes) through anisogamy (dissimilar gametes) to the familiar male (producing sperm) and female (producing eggs) condition of most large, multicellular organisms (oogamy). A variety of hypotheses explaining the selective mechanisms causing such evolution and the success of these lineages have been proposed, but little evidence and some confusion persists. Here, a few simplifying assumptions are used to extract and compare the essential features of the various ecological hypotheses. The comparisons reveal that the critical need is to identify a selective advantage of large, immobile gametes (eggs). Assumptions about the effect of sperm size on swimming speed are not important. The classic assumption of increasing zygote success with large size requires a relationship even stronger than survival proportional to volume, which seems unlikely and lacks empirical support. An assumption that eggs produce a pheromone sperm attractant leads, by established physical principles, to a more than sufficient advantage of large egg size. Without pheromones, combinations of increased target size and weaker increased zygote fitness or increased gamete longevity also provide sufficient selection.  相似文献   

14.
The general female bias in body size of animals is usually attributed to fecundity selection. While many studies have demonstrated a positive relationship between body size and fecundity, the most common interpretation of fecundity selection is that larger females have larger abdomens and can hold more eggs, yet the relationship between abdomen size and fecundity has rarely been examined. For the waterstrider, Aquarius remigis, we find a significant relationship between body size and fecundity and demonstrate that the target of fecundity selection is abdomen size. Thus, larger females have higher fecundities because they have larger abdomens and not because of their total size per se. The rate at which fecundity increases with increasing abdomen size exceeds that which would be expected due to a simple volume constraint and suggests that other factors, such as increased ability to obtain resources, may contribute to the increase in fecundity with body size. Selection intensities estimated from our data indicate that fecundity selection could be a significant selective force on both total and abdomen lengths. Previous studies have found that abdomen size increased faster than body size and thus, larger females had relatively larger abdomens. The relationship of abdomen length and thorax length in A. remigis is hypoallometric and indicates that larger females have relatively smaller abdomens. We hypothesize that this may reflect conservation of abdomen size in females developing under poor conditions. Finally, while egg size is not directly related to body size, we find a trade-off between egg size and number when female abdomen length is held constant, suggesting that selection on egg size may influence abdomen length only indirectly through its effects on fecundity.  相似文献   

15.
Social group size may affect the potential for sperm competition, and this in turn may favour ontogenetic adjustments in testicular mass according to the likely requirements for sperm and spermatophore production. In a number of comparative analyses of testis mass among vertebrate species that differ in mating system or social organization, increasing potential for sperm competition is associated with larger testis size. Intraspecific phenotypic plasticity should be able to produce the same pattern if social group size is heterogenous and reflects differing degrees of average sperm competition, but this intraspecific effect is less well studied. We tested the effect of social groups on both male and female investment in the simultaneously hermaphroditic leech, Helobdella papillornata. Leeches were placed in groups of one, two, four or eight. Sexual investment at the onset of reproductive maturity was quantified as the total testisac volume for male function and total egg volume for female function. We found that testisac volume (statistically adjusted for body size) showed a significant increase with increasing group size. Total egg volume (also adjusted for body size) was unaffected by group size. Our findings indicate adaptive developmental plasticity in male gonad investment in response to the potential for sperm competition.  相似文献   

16.
Species of the sea urchin genus Echinometra found on the two coasts of Panamá are recently diverged and only partially isolated by incomplete barriers to interspecific fertilization. This study confirms previous work that revealed incompatibility between the eggs of the Atlantic E. lucunter and the sperm of the other two neotropical species, whereas eggs of its sympatric congener E. viridis and allopatric E. vanbrunti are largely compatible with heterospecific sperm. Here we quantify fertilization using a range of sperm dilutions. We demonstrate a much stronger block to cross-species fertilization of E. lucunter eggs than was previously shown at fixed sperm concentrations, and mild incompatibility of the other two species' eggs where previous crosses between species were not distinguishable from within-species controls. Additionally, we present evidence for intraspecific variation in egg receptivity towards heterospecific sperm. Our findings here again discount the "reinforcement model" as a viable explanation for the pattern of prezygotic isolation. Gamete incompatibility in these Echinometra has appeared recently-within the last 1.5 million years-but is weaker in sympatry than in allopatry. Accidents of history may help explain why incompatibility of eggs emerged in one species and not in others. Compensatory sexual selection on sperm in this species could follow, and promote divergence of proteins mediating sperm-egg recognition.  相似文献   

17.
Fertilization is defined as the process of union of two gametes, eggs and sperm. When mammalian eggs and sperm come into contact in the female oviduct, a series of steps is set in motion that can lead to fertilization and ultimately to development of new individuals. The pathway begins with species-specific binding of sperm to eggs and ends a relatively short time later with fusion of a single sperm with each egg. Although this process has been investigated extensively, only recently have the molecular components of egg and sperm that participate in the mammalian fertilization pathway been identified. Some of these components may participate in gamete adhesion and exocytosis, whereas others may be involved in gamete fusion. Here we describe selected aspects of mammalian fertilization and address some of the latest experimental evidence that bears on this important area of research.  相似文献   

18.
Life-history theory predicts that for small clutches, variance in egg size (between individuals) should decrease in a predictable invariant manner as clutch size increases. To test this, we studied Daphnia magna at 350 different food treatments and recorded the number of eggs and the volume of each egg for their first clutch. As predicted, we found that the relationship between clutch size and resources devoted to reproduction was linear, variance in egg volume decreased with increasing clutch size, and resources were shared relatively equally between the eggs in a clutch. However, we found that the rate at which the range of egg volumes decreased with clutch size was slower than predicted. We discuss possible explanations for this discrepancy, including a lower limit on the volume of eggs that are produced and selection for smaller eggs when food is abundant. Consistent with this, we found that mean egg volume decreased with increasing clutch size.  相似文献   

19.
The provisioning of offspring can have far-reaching consequences for later life in a wide range of organisms and generally this provisioning is thought to be under maternal influence or control. In experiments with a broadcast-spawning ascidian, we found that the size of offspring was determined by egg size and the abundance of sperm present during fertilization. Larger eggs were fertilized at low sperm concentrations, whilst smaller eggs were successfully fertilized at high sperm concentrations. These differences in fertilized egg size resulted in differences in the development rate, hatching success and mean size of the subsequent larvae. Our results suggest that, in contrast to females that reproduce by other mating systems, free-spawning mothers lack some control over the provisioning of offspring. Furthermore, because males can alter the sperm environment, they can exert paternal (non-genetic) control over key offspring characteristics.  相似文献   

20.
Prevention of polyspermic fertilization in sea urchins (Jaffe, 1976, Nature (Lond.). 261:68-71) and the worm Urechis (Gould-Somero, Jaffe, and Holland, 1979, J. Cell Biol. 82:426-440) involves an electrically mediated fast block. The fertilizing sperm causes a positive shift in the egg's membrane potential; this fertilization potential prevents additional sperm entries. Since in Urechis the egg membrane potential required to prevent fertilization is more positive than in the sea urchin, we tested whether in a cross-species fertilization the blocking voltage is determined by the species of the egg or by the species of the sperm. With some sea urchin (Strongylocentrotus purpuratus) females, greater than or equal to 90% of the eggs were fertilized by Urechis sperm; a fertilization potential occurred, the fertilization envelope elevated, and sometimes decondensing Urechis sperm nuclei were found in the egg cytoplasm. After insemination of sea urchin eggs with Urechis sperm during voltage clamp at +50 mV, fertilization (fertilization envelope elevation) occurred in only nine of twenty trials, whereas, at +20 mV, fertilization occurred in ten of ten trials. With the same concentration of sea urchin sperm, fertilization of sea urchin eggs occurred, in only two of ten trials at +20 mV. These results indicate that the blocking voltage for fertilization in these crosses is determined by the sperm species, consistent with the hypothesis that the fertilization potential may block the translocation within the egg membrane of a positively charged component of the sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号