共查询到2条相似文献,搜索用时 0 毫秒
1.
Michael Cauchi Dawn P. Fowler Christopher Walton Claire Turner Wenjing Jia Rebekah N. Whitehead Lesley Griffiths Claire Dawson Hao Bai Rosemary H. Waring David B. Ramsden John O. Hunter Jeffrey A. Cole Conrad Bessant 《Metabolomics : Official journal of the Metabolomic Society》2014,10(6):1113-1120
Gastrointestinal diseases such as irritable bowel syndrome, Crohn’s disease (CD) and ulcerative colitis are a growing concern in the developed world. Current techniques for diagnosis are often costly, time consuming, inefficient, of great discomfort to the patient, and offer poor sensitivities and specificities. This paper describes the development and evaluation of a new methodology for the non-invasive diagnosis of such diseases using a combination of gas chromatography mass spectrometry (GC–MS) and chemometrics. Several potential sample matrices were tested: blood, breath, faeces and urine. Faecal samples provided the only statistically significant results, providing discrimination between CD and healthy controls with an overall classification accuracy of 85 % (78 % specificity; 93 % sensitivity). Differentiating CD from other diseases proved more challenging, with overall classification accuracy dropping to 79 % (83 % specificity; 68 % sensitivity). This diagnostic performance compares well with the gold standard technique of colonoscopy, suggesting that GC–MS may have potential as a non-invasive screening tool. 相似文献
2.
Xiaohui Xu Jianing Zeng William Mylott Mark Arnold James Waltrip Lisa Iacono Thomas Mariannino Bruce Stouffer 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(5-6):525-537
A sensitive method was developed and validated for the measurement of ixabepilone (BMS-247550, Ixempra?) using a demethylated analogue of ixabepilone (BMS-212188) as an internal standard. A 0.050 mL portion of each plasma sample was extracted with 0.450 mL of acetonitrile containing the internal standard via protein precipitation. The supernatant was analyzed on a LC–MS/MS system. Chromatography was carried out on a 2.0 mm × 100 mm YMC ODS-AQ 3 μm column using an isocractic mobile phase consisting of acetonitrile:10 mM ammonium acetate, pH 5.0 (70:30, v/v) at a flow rate of 0.30 mL/min. The mass spectrometer was fitted with a TurboIonSpray® source and operated in negative ionization mode. Detection of ixabepilone and BMS-212188 were accomplished using multiple reaction monitoring (MRM) of precursor > product ion pairs of m/z 505.2 > 405.2, and 492.1 > 392.1, respectively. The assay range was 2.00–500 ng/mL and was fitted to a 1/x2 weighted quadratic regression model. Replicate sample analysis indicated that intra- and inter-day accuracy and precision are within ±15.0%. The recovery of ixabepilone from 0.050 mL of plasma containing 5.00 and 400 ng/mL was greater than 94%. The method was demonstrated to be sensitive, selective and robust, and was successfully used to support clinical studies. This paper also discussed approaches used for resolving a curve splitting issue observed during quantitative analysis of ixabepilone in biological matrices. Finally, to adapt the methodology to pharmacokinetics of ixabepilone after oral administration, the potential interference of chemical degradants on the determination of ixabepilone was evaluated. 相似文献