首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Karyotype, sex chromosome system and cytogenetics characteristics of an unidentified species of the genus Apareiodon originating from Piquiri River (Paraná State, Brazil) were investigated using differential staining techniques (C-banding and Ag-staining) and fluorescent in situ hybridization (FISH) with 5S and 18S rDNA probes. The diploid chromosome number was 2n = 54 with 25 pairs of meta- (m) to submetacentric (sm) and 2 pairs of subtelocentric (st) chromosomes. The major ribosomal rDNA sites as revealed by Ag-staining and FISH with 18S rDNA probe were found in distal region of longer arm of st chromosome pair 26, while minor 5S sites were observed in the interstitial sites on chromosome pairs 2 (smaller cluster) and 7 (larger one). The C-positive heterochromatin had pericentromeric and telomeric distribution. The heteromorphic sex chromosome system consisted of male ZZ (pair 21) and female middle-sized m/st Z/W chromosomes. The pericentric inversion of heterochromatinized short arm of ancestral Z followed by multiplication of heterochromatin segments is hypothesized for origin of W chromosome. The observed karyotype and chromosomal markers corresponded to those found in other species of the genus.  相似文献   

2.
Somatic chromosomes ofStangeria eriopus (Stangeriaceae, Cycadales) were investigated by fluorescentin situ hybridization (FISH) using an 18S ribosomal DNA (rDNA) probe.Stangeria eriopus showed a chromosome number of 2n=16 with a karyotype of 12 median-, 2 subterminal-, and 2 terminal-centromeric chromosomes. FISH study ofS. eriopus revealed 16 signals made up of rDNA sites located on the terminal regions of the long arms of the 7 median- and 2 subterminal-centromeric chromosomes, on terminal region of the short arm of the 1 median-centromeric chromosome, on the terminal regions of the long and the short arms of 1 median- and 2 terminal-centromeric chromosomes. This result suggests that, not only karyomorphologically but also molecular-cytologically, the genusStangeria may be more closely related to the genusCeratozamia than the genusBowenia or the genusMicrocycas previously hypothesized.  相似文献   

3.
Chromatin organization in the holocentric chromosomes of the green apple aphid Aphis pomi has been investigated at a cytological level after C-banding, NOR, Giemsa, fluorochrome staining and fluorescent in situ hybridization (FISH). C-banding technique showed that heterochromatic bands are exclusively located on X chromosomes. This data represents a peculiar feature that clearly contradicts the equilocal distribution of heterochromatin typical of monocentric chromosomes. Moreover, silver staining and FISH carried out with a 28S rDNA probe localized rDNA genes on one telomere of each X chromosome; CMA3 staining reveals that these silver positive telomeres are the only GC-rich regions among A. pomi heterochromatin, whereas all other C-positive bands are DAPI positive thus containing AT-rich DNA.  相似文献   

4.
Telomeres, DNA–protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of Liliaceae and Alliaceae. For example, terminal regions of chromosomes of bunching onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum.Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposons and microsatellites in the formation of terminal heterochromatin are discussed.  相似文献   

5.
Karyotype and cytogenetic markers of Oligosarcus hepsetus from two Brazilian locations in the Paraíba do Sul River Basin (Brazil) were investigated using differential staining techniques (C-banding, silver (Ag)- and chromomycin A3 (CMA3)-staining) and fluorescent in situ hybridization (FISH) using 18 S rDNA and 5 S rDNA probes. The diploid chromosome number was invariably 2n = 50 with 3 pairs of metacentric, 5 pairs of submetacentric, 8 pairs of subtelocentric and 9 pairs of acrocentric chromosomes. No heteromorphic sex chromosomes were observed. The nucleolar organizer regions (NORs) were detected in the short arms of the largest acrocentric pair using Ag-, CMA3- stainings and FISH with 18 S rDNA probe, the latter showing also positive labeling in the short arms of a small acrocentric pair, not visualized by the former methods. FISH with 5 S rDNA probe showed positive labeling in the two chromosome pairs. While the CMA3-staining exhibited GC-rich heterochromatin segments in two pairs of chromosomes, including those coincided with Ag-NORs, the DAPI staining did not reveal any signal, indicating the absence of AT-rich heterochromatin. FISH with an As-51 satellite DNA probe derived from the closely related Astyanax scabripinnis did not reveal any positive signal, demonstrating the absence of this class of DNA in the genome of the specimens under study.  相似文献   

6.
The DNA composition and the in situ hybridization of satellite fractions were analysed in the New World camelids llama, alpaca, guanaco and vicuña. In the four camelid forms, it was possible to identify a similar main band DNA and five satellite fractions (I–V) with G+C base contents ranging from 32% to 66%. Satellites II–V from llama were in situ reannealed on chromosomes from the four camelid forms. The results obtained were: (a) the four satellites hybridized with regions of C-banding (centromeric regions of all chromosomes and short arms of some autosomes); (b) in general, homologous hybridizations (llama DNA versus llama chromosomes) were more efficient than heterologous reassociations; there were however three exceptions to this rule (vicuña and alpaca satellite fraction II, chromosome group B; vicuña fraction V, chromosome groups A and B); (c) X chromosomes from the four camelids had satellites III–V but lacked satellite II, (d) no satellite fraction was detected on chromosome Y. The analysis of the in situ hybridization patterns allowed to conclude that most or all C-banded chromosome regions comprise several satellite DNA fractions. It is, moreover, proposed that there is an ample interspecies variation in the number of chromosomes that cross-react with a given satellite fraction. Our data give further support to the close genomic kinship of New World camelids.  相似文献   

7.
Karyotype and other chromosomal markers of Characidium cf. gomesi were analyzed using conventional (Giemsa-staining, Ag-NOR and C-banding) and molecular (Fluorescent in situ hybridization (FISH) with 18S and 5S rDNA biotinylated probes) techniques. Both sexes had invariably diploid chromosome number 2n = 50 while karyotypes of males and females differed. That of male consisted of 32 metacentric + 18 submetacentric chromosomes and that of female consisted 31 metacentric + 18 submetacentric + 1 subtelocentric chromosomes. The Z chromosome was medium-sized metacentric, while W was highly heterochromatinized subtelocentric element. NORs as revealed by Ag-staining were situated at 2–7 telomeric regions while FISH with 18S probes showed consistently 10 signals at telomeric regions. FISH with 5S rDNA probe showed constantly signals at one metacentric pair. Distribution of centromeric heterochromatin was mostly in all chromosome pairs, besides some telomeric sites. The common origin of the sex chromosome system of ZZ/ZW type in the karyotypes of other representatives of the genus analyzed so far might be hypothesized based on biogeography and partial phylogeny of the group.  相似文献   

8.
Chromosomes of Triportheus nematurus, a fish species from family Characidae, were analyzed in order to establish the conventional karyotype, location of C-band positive heterochromatin, Ag-NORs, GC- and AT-rich sites, and mapping of 18S and 5S rDNA with fluorescence in situ hybridization (FISH). The diploid number found was 2n = 52 chromosomes in both males and females. However, the females presented a pair of differentiated heteromorphic chromosomes, characterizing a ZZ/ZW sex chromosome system. The Z chromosome was metacentric and the largest one in the karyotype, bearing C-positive heterochromatin at pericentromeric and telomeric regions. The W chromosome was middle-sized submetacentric, appearing mostly heterochromatic after C-banding and presenting heterogeneous heterochromatin composed of GC- and AT-rich regions revealed by fluorochrome staining. Ag-NORs were also GC-rich and surrounded by heterochromatic regions, being located at the secondary constriction on the short arms of the second chromosome pair, in agreement with 18S rDNA sites detected with FISH. The 18S and 5S rDNA were aligned in tandem, representing an uncommon situation in fishes. The results obtained reinforce the basal condition of the ZZ/ZW sex system in the genus Triportheus, probably arisen prior to speciation in the group.  相似文献   

9.
BAC2, a rice BAC clone containing (TTTAGGG)n homologous sequences, was analyzed by Southern hybridization and DNA sequencing of its subclones. It was disclosed that there were many tandem repeated satellite DNA sequences, called TA352, as well as simple tandem repeats consisting of TTTAGGG or its variant within the BAC2 insert. A 0. 8 kb (TTTAGGG)n-containing fragment in BAC2 was mapped in the telomere regions of at least 5 pairs of rice chromosomes by using fluorescencein situ hybridization (FISH). By RFLP analysis of low copy sequences the BAC2 clone was localized in one terminal region of chromosome 6. All the results strongly suggest that the telomeric DNA sequences of rice are TTTAGGG or its variant, and the linked satellite DNA TA352 sequences belong to telomere-associated sequences.  相似文献   

10.
BAC2, a rice BAC clone containing (TTTAGGG)n homologous sequences, was analyzed by Southern hybridization and DNA sequencing of its subclones. It was disclosed that there were many tandem repeated satellite DNA sequences, called TA352, as well as simple tandem repeats consisting of TTTAGGG or its variant within the BAC2 insert. A 0. 8 kb (TTTAGGG)n-containing fragment in BAC2 was mapped in the telomere regions of at least 5 pairs of rice chromosomes by using fluorescencein situ hybridization (FISH). By RFLP analysis of low copy sequences the BAC2 clone was localized in one terminal region of chromosome 6. All the results strongly suggest that the telomeric DNA sequences of rice are TTTAGGG or its variant, and the linked satellite DNA TA352 sequences belong to telomere-associated sequences.  相似文献   

11.
The taxonomy of the family Parodontidae is confused, with many open questions regarding the most appropriate generic groupings. Studies on the organization, structure, composition, and in situ location of chromosomal features have led to consistent advances in the understanding of genome evolution. Among the species of Parodontidae, the consistent chromosomal divergences can be helpful in taxonomic classification, such as heteromorphic chromosome sex, karyotypic formulae, and number/location of the repetitive DNAs. Molecular analysis of repetitive sequences of satellite DNA and their physical mapping in the chromosomes of different species in a single group may be used to infer evolutionary divergence and cladistic grouping. In the present study, rDNA and the satellite DNA pPh2004 were mapped by fluorescent in situ hybridization on the chromosomes of some species of Parodontidae. These results were analyzed and reviewed together with other chromosomal markers and previously published data, to formulate inferences about the diversification of the genomes and propose a clustering of some Parodontidae species. This analysis indicated that the species Apareiodon affinis, Parodon moreirai, Parodon hilarii, Parodon nasus, and Parodon pongoensis have an apomorphic state for satellite DNA pPh2004 in Parodontidae in relation to previously studied species of Apareiodon.  相似文献   

12.
Conventional and molecular chromosomal analyses were carried out on three populations of Apareiodon ibitiensis sampled from the hydrographic basins of the São Francisco River and Upper Paraná River (Brazil). The results reveal a conserved diploid number (2n = 54 chromosomes), a karyotype formula consisting of 50 m‐sm + 4st and a ZZ/ZW sex chromosome system that has not been previously identified for the species. C‐banding analysis with propidium iodide staining revealed centromeric and terminal bands located in the chromosomes of the specimens from the three populations and allowed the identification of heteromorphism of heterochromatin regions in the Z and W chromosomes. The number of 18S sites located through fluorescent in situ hybridization (FISH) varied between the populations of the São Francisco and Upper Paraná Rivers. The location of 5S rDNA sites proved comparable in one pair of metacentric chromosomes. Thus, the present study proposes a ZZ/ZW sex chromosome system for A. ibitiensis among the Parodontidae, and a hypothesis is presented regarding possible W chromosome differentiation stages in this species through DNA accumulation, showing geographical variations for this characteristic, possibly as a consequence of geographical reproductive isolation.  相似文献   

13.
Karyotypic and cytogenetic characteristics of Vimba vimba and V. elongata were investigated using differential staining techniques (sequential C-banding, Ag- and CMA3-staining) and fluorescent in situ hybridization (FISH) with 28S rDNA probe. The diploid chromosome number in both species was 2n = 50 with 8 pairs of metacentrics, 14 pairs of submetacentrics to subtelocentrics and 3 pairs of subtelo- to acrocentrics. The largest chromosome pair of the complements was characteristically subtelo- to acrocentric. The nucleolar organizer regions (NORs) in both species were detected in the telomeres of a single, middle-sized subtelocentric chromosome pair, a pattern common in a number of other Leuciscinae. FISH with rDNA probe produced consistently positive hybridization signals detected in the same regions indicated by Ag-staining and CMA3-fluorescence. The distribution of C-positive heterochromatin was identical in both species, including a conspicuous size polymorphism of heterochromatic blocks in the largest metacentric and subtelo- to acrocentric chromosomal pairs. No heteromorphic sex chromosomes were detected. A single analyzed individual of V. melanops possessed the same karyotype and NOR phenotype as V. vimba and V. elongata. The apparent karyotype homogeneity and chromosomal characteristics of ribosomal DNA in all three species of the genus Vimba is consistent to that found in most other representatives of the European leuciscine cyprinid fishes.  相似文献   

14.
A study was conducted on the chromosomes of a Rhamdia hilarii (Pisces, Pimelodidae) population. The results suggest that the basic chromosome number is 2n=58, with numerical variation up to a limit of 2n=63, due to the presence of supernumerary chromosomes which seem to be mitotically stable. These chromosomes are metacentrics and can be different in size. The C-banding pattern, showing heterochromatin especially in both telomeric regions, permits their identification in the karyotype. The NORs are located on secondary terminal constrictions on the short arm of a pair of subtelocentric chromosomes. However, there may be heteromorphism in the size of the secondary constrictions and, consequently, in the size of the NORs.  相似文献   

15.
The possible origins and differentiation of a ZZ/ZW sex chromosome system in Semaprochilodus taeniurus, the only species of the family Prochilodontidae known to possess heteromorphic sex chromosomes, were examined by conventional (C-banding) and molecular (cross-species hybridization of W-specific WCP, Fluorescence in situ hybridization (FISH) with telomere (TTAGGG)n, and Rex1 probes) cytogenetic protocols. Several segments obtained by W-specific probe were cloned, and the sequences localized on the W chromosome were identified by DNA sequencing and search of nucleotide collections of the NCBI and GIRI using BLAST and CENSOR, respectively. Blocks of constitutive heterochromatin in chromosomes of S. taeniurus were observed in the centromere of all autosomal chromosomes and in the terminal, interstitial, and pericentromeric regions of the W chromosome, which did not demonstrate interstitial telomeric sites with FISH of the telomere probe. The Rex1 probe displayed a compartmentalized distribution pattern in some chromosomes and showed signs of invasion of the pericentromeric region in the W chromosome. Chromosomal painting with the W-specific WCP of S. taeniurus onto its own chromosomes showed complete staining of the W chromosome, centromeric sites, and the ends of the Z chromosome, as well as other autosomes. However, cross-species painting using this WCP on chromosomes of S. insignis, Prochilodus lineatus, and P. nigricans did not reveal a proto-W element, but instead demonstrated scattered positive signals of repetitive DNAs. Identification of the W-specific repetitive sequences showed high similarity to microsatellites and transposable elements. Classes of repetitive DNA identified in the W chromosome suggested that the genetic degeneration of this chromosome in S. taeniurus occurred through accumulation of these repetitive DNAs.  相似文献   

16.
Satellite DNA and evolution of sex chromosomes   总被引:7,自引:2,他引:7  
The satellite DNA (satellite III) which is mainly represented in the female of Elaphe radiata (Ophidia, Colubridae) has been isolated and its buoyant density has been determined (=1.700 g cm–3). In situ hybridisation of radioactive complementary RNA of this satellite DNA with the chromosomes of different species has revealed that it is mainly concentrated on the W sex chromosome and its sequences are conserved throughout the sub-order Ophidia. From hybridisation studies these sequences are absent from the primitive family Boidae which represents a primitive state of differentiation of sex chromosomes. Chromosome analysis and C-banding have also revealed the absence of heteromorphism and of an entirely heterochromatic chromosome in the species belonging to the primitive family and their presence in the species of highly evolved families. It is suggested that the origin of satellite DNA (satellite III) in the W chromosome is the first step in differentiation of W from the Z in snakes by generating asynchrony in the DNA replication pattern of Z and W chromosomes and thus conceivably reducing the frequency of crossing-over between them which is the prerequisite of differentiation of sex chromosomes. Presence of similar sex chromosome associated satellite DNA in domestic chicken suggests its existence in a wider range of vertebrates than just the snakes.  相似文献   

17.
Chromosome analyses of common Indian Krait, B. caeuleus from three geographical regions of India have revealed variable diploid numbers of 43, 44 and 45 in different female individuals but a constant diploid number of 44 in the males. C-banding and in situ hybridization studies, using radio labelled W sex chromosome specific satellite DNA as a probe, have shown that C-banding and sex chromosome associated satellite DNA's are exclusively localised in the W chromosome. The W chromosome is involved in reciprocal translocations either with a medium sized macroautosome or with a microchromosome resulting in a multiple sex chromosome constitution of Z1Z1Z2Z2/Z1Z2W type. In some female individuals dissociation of the W has resulted in multiple W chromosomes, W1 and W2. These polymorphisms are uniquely confined to the female sex only. A predominance of polymorphic females, involving particularly the translocation of a medium sized macrochromosome, in all three geeographical regions and the restriction of the females having the original chromosome constitution (ZW) to one geographical region suggests that polymorphic individuals have adaptive flexibility and higher fecundity.  相似文献   

18.
Tritiated ribosomal RNA (rRNA) was prepared from hypocotyls of Phaseolus coccineus grown in liquid culture in the dark and in presence of 5-3H-uridine. A mixture of the 18S and 25S 3H-rRNA fractions was used for hybridization with DNA in the polytene chromosome cells of the embryo suspensor of P. coccineus. It was shown that the ribosomal cistrons (rDNA) are located in the nucleolus organizing system (satellite, nucleolar constriction and organizer) of the satellited chromosome pairs I (S1) and V (S2), in the proximal heterochromatic segment of the long arm of chromosomes S1 and in the terminal heterochromatic segment of chromosome pair II. The micronucleoli which are produced by the satellite and nucleolus organizer of the chromosome pair S1 contain rDNA; on the contrary, no rRNA-DNA hybridization is found in the DNA containing granules which are produced by the satellite and nucleolus organizer of chromosome pair S2. The DNA which is amplified during production of DNA puffs at some chromosomal regions apparently does not code for ribosomal RNA (no detectable rRNA-DNA hybridization).Publication no. 62 from the Laboratorio di Mutagenesi e Differenziamento, Consiglio Nazionale delle Ricerche, Pisa. Part of the investigation was supported by Contract SC 001/076-69-1 BIAN between the European Atomic Energy Community and the University of Pisa, Institute of Genetics.  相似文献   

19.
Two species of Odontocheila, O. confusa and O. nodicornis, from the Neotropical Region were studied regarding their karyotypes, localisation and activity of ribosomal genes and C-banding. The species, although belonging to the same genus, have quite distinct karyotypes. O. confusa has 10 pairs of autosomes and a single sex chromosome mechanism of the XY/XX type, thus a diploid value of 2n = 22 in males and females. One aneuploid male with a diploid number of 2n = 20 and one male with three B chromosomes were found in a total of eight males studied. O. nodicornis has 17 autosomal pairs and also a single chromosome system but of the X0/XX type, thus a diploid value of 2n = 35 in males and 2n = 36 in females. Fluorescence in situ hybridisation (FISH) revealed the presence of rDNA clusters in two autosomes in both species in mitotic and meiotic figures. Silver staining of male interphase nuclei confirmed the FISH results and showed that all rDNA genes were active. C-banding analysis revealed the presence of constitutive heterochromatin in the centromeres of all chromosomes in the two species plus two pairs in O. nodicornis with terminal positive C-bands. These results are discussed from the cytogenetic and evolutionary point of view.  相似文献   

20.
The karyotype of Halobatrachus didactylus presents 46 chromosomes, composed of eight metacentric, 18 submetacentric, four subtelocentric, and 16 acrocentric chromosomes. The results of FISH showed that the major ribosomal genes were located in the terminal position of the short arm of a large submetacentric chromosome. They also showed a high variation in the hybridization signals. The products of amplification of 5S rDNA produced bands of about 420 pb. The PCR labeled products showed hybridization signals in the subcentromeric position of the long arm of a submetacentric chromosome of medium size. Double-color FISH indicated that the two ribosomal families are not co-located since they hybridizated in different chromosomal pairs. Telomeres of all the chromosomes hybridized with the (TTAGGG) n probe. The GATA probe displayed a strong signal in the long arm of a submetacentric chromosome of medium size, in the subcentromeric position. The double-color FISH showed that the microsatellite GATA and the 5S rDNA gene are located in different chromosomal pairs. The majority presence of GATA probes in one pair of chromosomes is unusual and considering its distribution through different taxa it could be due to evolutionary mechanisms of heterochromatine accumulation, leading to the formation of differentiated sex chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号