首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequence of the blue copper protein of Alcaligenes faecalis   总被引:1,自引:0,他引:1  
S Hormel  E Adman  K A Walsh  T Beppu  K Titani 《FEBS letters》1986,197(1-2):301-304
The complete amino acid sequence of a blue copper protein from Alcaligenes faecalis S-6 has been determined. This protein is clearly homologous to pseudoazurins in Achromobacter cycloclastes and Pseudomonas AM1, more distantly related to plant plastocyanins, and markedly different from the azurin of Pseudomonas aeruginosa. Yet all of these proteins bind copper, and analogous ligands appear to be involved.  相似文献   

2.
The amino acid sequence of the small copper protein auracyanin A isolated from the thermophilic photosynthetic green bacterium Chloroflexus aurantiacus has been determined to be a polypeptide of 139 residues. His58, Cys123, His128, and Met132 are spaced in a way to be expected if they are the evolutionary conserved metal ligands as in the known small copper proteins plastocyanin and azurin. Secondary structure prediction also indicates that auracyanin has a general beta-barrel structure similar to that of azurin from Pseudomonas aeruginosa and plastocyanin from poplar leaves. However, auracyanin appears to have sequence characteristics of both small copper protein sequence classes. The overall similarity with a consensus sequence of azurin is roughly the same as that with a consensus sequence of plastocyanin, namely 30.5%. We suggest that auracyanin A, together with the B forms, is the first example of a new class of small copper proteins that may be descendants of an ancestral sequence to both the azurin proteins occurring in prokaryotic nonphotosynthetic bacteria and the plastocyanin proteins occurring in both prokaryotic cyanobacteria and eukaryotic algae and plants. The N-terminal sequence region 1-18 of auracyanin is remarkably rich in glycine and hydroxy amino acids, and required mass spectrometric analysis to be determined. The nature of the blocking group X is not yet known, although its mass has been determined to be 220 Da. The auracyanins are the first small blue copper proteins found and studied in anoxygenic photosynthetic bacteria and are likely to mediate electron transfer between the cytochrome bc1 complex and the photosynthetic reaction center.  相似文献   

3.

Background  

Proteins having similar functions from different sources can be identified by the occurrence in their sequences, a conserved cluster of amino acids referred to as pattern, motif, signature or fingerprint. The wide usage of protein sequence analysis in par with the growth of databases signifies the importance of using patterns or signatures to retrieve out related sequences. Blue copper proteins are found in the electron transport chain of prokaryotes and eukaryotes. The signatures already existing in the databases like the type 1 copper blue, multiple copper oxidase, cyt b/b6, photosystem 1 psaA&B, psaG&K, and reiske iron sulphur protein are not specified signatures for blue copper proteins as the name itself suggests. Most profile and motif databases strive to classify protein sequences into a broad spectrum of protein families. This work describes the signatures designed based on the copper metal binding motifs in blue copper proteins. The common feature in all blue copper proteins is a trigonal planar arrangement of two nitrogen ligands [each from histidine] and one sulphur containing thiolate ligand [from cysteine], with strong interactions between the copper center and these ligands.  相似文献   

4.
A blue copper protein was purified together with a type II quinohemoprotein alcohol dehydrogenase (ADH IIB) from the soluble fraction of Pseudomonas putida HK5 grown on n-butanol. The purified blue copper protein was shown to be azurin, on the basis of several properties such as its absorption maximum (623 nm), its low molecular mass (17 500 Da), its acidic nature (pI of 4.1), its relatively high redox potential (306 mV), the presence of an intramolecular disulfide bond, and N-terminal amino acid sequence homology with respect to azurins from other sources, especially from P. putida NCIB 9869 and Pseudomonas fluorescens. Direct electron transfer from ADH IIB to azurin was shown to occur at a rate of 48-70 s-1. The apparent Km value of ADH IIB for azurin, determined by steady-state kinetics, was decreased several-fold by increasing the ionic strength. Furthermore, the extent of fluorescence quenching of ADH IIB due to the interaction with azurin was increased by increasing the ionic strength, but the binding constant for binding between ADH IIB and azurin was unchanged. The redox potential of azurin was increased 12 mV by incubation with ADH but not vice versa. Furthermore, the redox potential gap between ADH and azurin was increased from 102 to 126 mV by increasing the ionic strength. It is conceivable that a hydrophobic interaction is involved in the electron transfer between both proteins, and it is also suggested that the electron transfer may occur by a freely reversible on and off binding process but may not be related to the global binding process of both proteins. Thus, the results presented here strongly suggest that azurin works as an electron-transfer mediator in a PQQ-dependent alcohol oxidase respiratory chain in P. putida HK5.  相似文献   

5.
Rate constants have been determined for the electron-transfer reactions between reduced free flavins and flavodoxin semiquinone and several blue copper proteins. Correlations between these values and redox potentials demonstrate that spinach plastocyanin, Pseudomonas aeruginosa azurin, Alcaligenes sp. azurin, and Alcaligenes sp. nitrite reductase have the same intrinsic reactivities toward free flavins, whereas stellacyanin is more reactive (3.3 times) and laccase considerably less reactive (approximately 12 times). Electrostatic interactions between the negatively charged flavin mononucleotide (FMN) and the copper proteins show that the interaction site charges for laccase and nitrite reductase are opposite in sign to the net protein charge and that the signs and magnitudes of the charges are consistent with the known three-dimensional structures for plastocyanin and the azurins and with amino acid sequence homologies for stellacyanin. The results demonstrate that the apparent interaction site charge with flavodoxin is larger than that with FMN for plastocyanin, nitrite reductase, and stellacyanin but smaller for Pseudomonas azurin. This is interpreted in terms of a larger interaction domain for the flavodoxin reaction, which allows charged groups more distant from the actual electron-transfer site to become involved. The intrinsic reactivities of plastocyanin and azurin toward flavodoxin are the same, as was the case with FMN, but both stellacyanin and nitrite reductase are considerably less reactive than expected (approximately 2 orders of magnitude). This result suggests the involvement of steric factors with these latter two proteins which discriminate against large reactants such as flavodoxin.  相似文献   

6.
Stellacyanins are blue (type I) copper glycoproteins that differ from other members of the cupredoxin family in their spectroscopic and electron transfer properties. Until now, stellacyanins have eluded structure determination. Here we report the three-dimensional crystal structure of the 109 amino acid, non-glycosylated copper binding domain of recombinant cucumber stellacyanin refined to 1.6 A resolution. The crystallographic R-value for all 18,488 reflections (sigma > 0) between 50-1.6 A is 0.195. The overall fold is organized in two beta-sheets, both with four beta-stands. Two alpha-helices are found in loop regions between beta-strands. The beta-sheets form a beta-sandwich similar to those found in other cupredoxins, but some features differ from proteins such as plastocyanin and azurin in that the beta-barrel is more flattened, there is an extra N-terminal alpha-helix, and the copper binding site is much more solvent accessible. The presence of a disulfide bond at the copper binding end of the protein confirms that cucumber stellacyanin has a phytocyanin-like fold. The ligands to copper are two histidines, one cysteine, and one glutamine, the latter replacing the methionine typically found in mononuclear blue copper proteins. The Cu-Gln bond is one of the shortest axial ligand bond distances observed to date in structurally characterized type I copper proteins. The characteristic spectroscopic properties and electron transfer reactivity of stellacyanin, which differ significantly from those of other well-characterized cupredoxins, can be explained by its more exposed copper site, its distinctive amino acid ligand composition, and its nearly tetrahedral ligand geometry. Surface features on the cucumber stellacyanin molecule that could be involved in interactions with putative redox partners are discussed.  相似文献   

7.
 The reduction potentials of blue copper sites vary between 180 and about 1000 mV. It has been suggested that the reason for this variation is that the proteins constrain the distance between the copper ion and its axial ligands to different values. We have tested this suggestion by performing density functional B3LYP calculations on realistic models of the blue copper proteins, including solvent effects by the polarizable continuum method. Constraining the Cu-SMet bond length to values between 245 and 310 pm (the range encountered in crystal structures) change the reduction potential by less than 70 mV. Similarly, we have studied five typical blue copper proteins spanning the whole range of reduction potentials: stellacyanin, plastocyanin, azurin, rusticyanin, and ceruloplasmin. These studies included the methionine (or glutamine) ligand as well as the back-bone carbonyl oxygen group that is a ligand in azurin and is found at larger distances in the other proteins. The active-site models of these proteins show a variation in the reduction potential of about 140 mV, i.e., only a minor part of the range observed experimentally (800 mV). Consequently, we can conclude that the axial ligands have a small influence on the reduction potentials of the blue copper proteins. Instead, the large variation in the reduction potentials seems to arise mainly from variations in the solvent accessibility of the copper site and in the orientation of protein dipoles around the copper site. Received: 7 April 1999 / Accepted: 26 July 1999  相似文献   

8.
Copper coordination in blue proteins   总被引:5,自引:0,他引:5  
The spectroscopic and electrochemical properties of blue copper proteins are strikingly different from those of inorganic copper complexes in aqueous solution. Over three decades ago this unusual behavior was ascribed to constrained coordination in the folded protein; consistent with this view, crystal structure determinations of blue proteins have demonstrated that the ligand positions are essentially unchanged on reduction as well as in the apoprotein. Blue copper reduction potentials are tuned to match the particular function of a given protein by exclusion of water from the metal site and strict control of the positions of axial ligands in the folded structure. Extensive experimental work has established that the reorganization energy of a prototypal protein, Pseudomonas aeruginosa azurin, is approximately 0.7 eV, a value that is much lower than those of inorganic copper complexes in aqueous solution. The lowered reorganization energy in the protein, which is attributable to constrained coordination, is critically important for function, since the driving forces for electron transfer often are low (approximately 0.1 eV) between blue copper centers and distant (>10 A) donors and acceptors.  相似文献   

9.
A comparative investigation of the effects of cooling rate and solvent physicochemical properties on the structural heterogeneity of wild-type and disulfide bond depleted azurin (Cys3Ala/Cys26Ala) and of amicyanin has been performed by EPR spectroscopy and computer simulation. By describing the spectral features of the EPR spectra in terms of Gaussian distributions of the components of the g and A tensors of the spin Hamiltonian, we have shown that either the cooling rate or the solvent composition affect the structural heterogeneity of the proteins. Such a heterogeneity has been quantified by the standard deviations sigmag and sigmaA of the parallel components of the axially symmetric tensors. In particular, both parameters become smaller after the slow cooling cycle; such a reduction is more significant when glycerol is added as cosolvent to the protein solutions. The comparison of the deltag and sigmaA values found, for the copper proteins investigated, highlights that the reduction is more marked in the azurins compared to amicyanin and that the Cys3Ala/Cys26Ala azurin mutant has a structural heterogeneity lower than that shown by the wild-type protein. The remarkable similarity of the copper coordination sphere of the proteins suggests a more rigid structure of the azurin protein matrix in the absence of the disulfide bridge compared to wild-type azurin and of amicyanin with respect to both forms of azurin. The former result establishes an important role for the -SS- bond in modulating the flexibility of wild-type azurin.  相似文献   

10.
Molecular dynamics was applied to dissect out the internal motions of azurin, a copper protein performing electron transfer. Simulations of 16.5 ns were analyzed in search of coordinated displacements of amino acid residues that are important for the protein function. A region with high conformational instability was found in the 'southern' end of the molecule, far away from the copper site and the binding sites for the redox partners of azurin. By excluding the 'southern' region from the subsequent analysis, correlated motions were identified in the hydrophobic patch that surrounds the protein active site. The simulation results are in excellent agreement with recent NMR data on azurin in solution [A. V. Zhuravleva, D. M. Korzhnev, E. Kupce, A. S. Arseniev, M. Billeter, V. Y. Orekhov, Gated electron transfers and electron pathways in azurin: a NMR dynamic study at multiple fields and temperatures, J. Mol. Biol. 342 (2004) 1599-1611] and suggest a rationale for cooperative displacements of protein residues that are thought to be critical for the electron transfer process. A number of other structural and dynamic features of azurin are discussed in the context of the blue copper protein family and an explanation is proposed to account for the variability/conservation of some regions in the cupredoxins.  相似文献   

11.
Copper K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and (15)N NMR relaxation studies were performed on samples of a variant azurin in which the surface-exposed histidine ligand of the copper atom (His117) has been replaced by glycine. The experiments were performed to probe the structure of the active site and the protein dynamics. The cavity in the protein structure created by the His-->Gly replacement could be filled by external ligands, which can either restore the spectroscopic properties of the original type-1 copper site or create a new type-2 copper site. The binding of external ligands occurs only when the copper atom is in its oxidised state. In the reduced form, the binding is abolished. From the EXAFS experiments, it is concluded that for the oxidised type-1 copper sites the protein plus external ligand (L) provide an NSS*L donor set deriving from His46, Cys112, Met121 and the external ligand. The type-2 copper site features an S(N/O)(3) donor set in which the S-donor derives from Cys112, one N-donor from His46 and the remaining two N or O donors from one or more external ligands. Upon reduction of the type-1 as well as the type-2 site, the external ligand drops out of the copper site and the coordination reduces to 3-fold with an SS*N donor set deriving from His46, Cys112 and Met121. The Cu-S(delta)(Met) distance is reduced from about 3.2 to 2.3 A. Analysis of the NMR data shows that the hydrophobic patch around His117 has gained fluxionality when compared to wild-type azurin, which may explain why the His117Gly variant is able to accommodate a variety of external ligands of different sizes and with different chelating properties. On the other hand, the structure and dynamics of the beta-sandwich, which comprises the main body of the protein, is only slightly affected by the mutation. The unusually high reduction potential of the His117Gly azurin is discussed in light of the present results.  相似文献   

12.
The complete amino acid sequence of the blue copper protein amicyanin of Thiobacillus versutus, induced when the bacterium is grown on methylamine, has been determined as follows: QDKITVTSEKPVAAADVPADAVVVGIEKMKYLTPEVTIKAGETVYWVNGEVMPHNVA FKKGIVGEDAFRGEMMTKDQAYAITFNEAGSYDYFCTPHPFMRGKVIVE. The four copper ligand residues in this 106-residue-containing polypeptide chain are His54, Cys93, His96, and Met99. The Thiobacillus amicyanin is 52% similar to the amicyanin of Pseudomonas AM1, the only other copper protein known with the same spacing between the second histidine ligand and the methionine ligand. T. versutus amicyanin contains no cysteine bridge and is more closely related to the plant copper protein plastocyanin than to the bacterial copper protein azurin. Alignment of the two known amicyanin sequences with the consensus sequence of the plastocyanins and comparison with the known three-dimensional structure of poplar leaves plastocyanin reveals that the bacterial proteins have the same overall structure with two beta-sheets packed face to face. The major structural differences between the amicyanins and the plastocyanins appear to be located in two of the five loops that connect the six identified beta-strands of the amicyanins. The first of these two loops, connecting strands F and G, contains a ligand histidine and must have a different conformation from the same loop in the plastocyanins because it is shorter by two amino acids. Further differences occur in the loop connecting the strands D and E. This loop contains only 17 residues in amicyanin whereas the corresponding loop of plastocyanin contains 25 residues. Despite these differences the amicyanins appear much closer related to the plastocyanins than to the azurins. The present findings demonstrate that the occurrence of blue copper proteins with clearly plastocyanin-like features is not restricted to photosynthetic redox chains.  相似文献   

13.
Site-directed mutagenesis of the structural gene for azurin from Pseudomonas aeruginosa has been used to prepare azurins in which amino acid residues in two separate electron-transfer sites have been changed: His-35-Lys and Glu-91-Gln at one site and Phe-114-Ala at the other. The charge-transfer band and the EPR spectrum are the same as in the wild-type protein in the first two mutants, whereas in the Phe-114-Ala azurin, the optical band is shifted downwards by 7 nm and the copper hyperfine splitting is decreased by 4.10(-4)/cm. This protein also shows an increase of 20-40 mV in the reduction potential compared to the other azurins. The potentials of all four azurins decrease with increasing pH in phosphate but not in zwitterionic buffers with high ionic strength. The rate constant for electron exchange with cytochrome c551 is unchanged compared to the wild-type protein in the Phe-114-Ala azurin, but is increased in the other two mutant proteins. The results suggest that Glu-91 is not important for the interaction with cytochrome c551 and that His-35 plays no critical role in the electron transfer to the copper site.  相似文献   

14.

Aim

Copper deficiency could cause fatal hematological and neurological disorders or other diseases. Amino acids are involved in the absorption of copper ions. The purpose of this study is to evaluate the absorption of copper in amino acid complex forms and determine its mechanism in the Caco-2 cell culture model.

Main methods

The human colonic adenocarcinoma cell line Caco-2 culture model was used to determine the permeability of copper ions in inorganic form (CuSO4) and the amino acid complex forms. Lysine and methionine, as well as carboplatin were used to determine the possible involvement of amino acid transporters or copper transporter 1 (CTR1).

Key findings

The results showed that all of the amino acid complex forms facilitated copper absorption. The apparent permeabilities of copper ions in these complex forms were at least 7.6 fold higher than those in the CuSO4 form. The permeability rank order of copper in various amino acid complex forms was Cu-glutamate < Cu-lysine = Cu-aspartic acid = Cu methionine < Cu-arginine < Cu-(lysine/glutamate). Mechanistic studies revealed that the enhanced absorption of copper in copper amino acid complexes could be the result of enhanced uptake (as in Cu-methionine complex) or enhanced basolateral efflux (as in Cu-lysine complex). Copper transporter 1 (or CTR1) inhibitor carboplatin did not affect the absorption of copper in Cu-methionine complex, suggesting that the dominant pathway for copper amino acid complexes is not CTR1.

Significance

Enhanced absorption of copper ions in amino acid complex appears to be mediated by amino acid transporters.  相似文献   

15.
The thermal unfolding of the copper redox protein azurin was studied in the presence of four different dipeptide-based ionic liquids (ILs) utilizing tetramethylguanidinium as the cation. The four dipeptides have different sequences including the amino acids Ser and Asp: TMG-AspAsp, TMG-SerSer, TMG-SerAsp, and TMG-AspSer. Thermal unfolding curves generated from temperature-dependent fluorescence spectroscopy experiments showed that TMG-AspAsp and TMG-SerSer have minor destabilizing effects on the protein while TMG-AspSer and TMG-SerAsp strongly destabilize azurin. Red-shifted fluorescence signatures in the 25 °C correlate with the observed protein destabilization in the solutions with TMG-AspSer and TMG-SerAsp. These signals could correspond to interactions between the Asp residue in the dipeptide and the azurin Trp residue in the unfolded state. These results, supported by appropriate control experiments, suggest that dipeptide sequence-specific interactions lead to selective protein destabilization and motivate further studies of TMG-dipeptide ILs.  相似文献   

16.
The effects of cooling rate and of solvent properties on the active site heterogeneity of two copper proteins, azurin and plastocyanin, have been investigated at low temperature by electron paramagnetic resonance spectroscopy. The spectra of theses proteins have been analyzed, by an accurate computer simulation, in terms of a distribution of some relevant spin-Hamiltonian parameters. The results show that the structural heterogeneity of both proteins, quantified by the width of the distribution in the g and A tensors, is affected by both the freezing procedure and the solvent composition. In particular, the g distribution width is found to be reduced in the slow cooling regime; such a reduction appearing more significant when glycerol is added to the protein solutions. Despite of the similarity in the copper ion microenvironments of the two proteins, the effects are more pronounced in azurin. The results are discussed also in connection with the role played by the solvent and the rate of freezing in featuring the conformational substate landscape.  相似文献   

17.
Summary Biological electron transfer is not well understood. The question is addressed in this contribution with reference to the so-called blue copper proteins, each of which has a single copper atom at its active centre. The redox activity (as probed by the electron self exchange reaction) of the Cu centre seems not to be affected. The electron self exchange reaction is known to proceed through His-117, and the hydrophobic patch is most important in the formation of the azurin/azurin encounter complex. Ph effects have not been observed on the three-dimensional structure ofA. denitrificans azurin, which may indicate that if present at all these have no direct physiological implications. Mutants are in process of construction.  相似文献   

18.
Azurin*, a by-product of heterologous expression of the gene encoding the blue copper protein azurin from Pseudomonas aeruginosa in Escherichia coli, was characterized by chemical analysis and electrospray ionization mass spectrometry, and its structure determined by X-ray crystallography. It was shown that azurin* is native azurin with its copper atom replaced by zinc in the metal binding site. Zinc is probably incorporated in the apo-protein after its expression and transport into the periplasm. Holo-azurin can be reconstituted from azurin* by prolonged exposure of the protein to high copper ion concentrations or unfolding of the protein and refolding in the presence of copper ions. An X-ray crystallographic analysis of azurin* at 0.21-nm resolution revealed that the overall structure of azurin is not perturbed by the metal exchange. However, the geometry of the co-ordination sphere changes from trigonal bipyramidal in the case of copper azurin to distorted tetrahedral for the zinc protein. The copper ligand Met121 is no longer co-ordinated to zinc which adopts a position close to the carbonyl oxygen atom from residue Gly45. The polypeptide structure surrounding the metal site undergoes moderate reorganization upon zinc binding. The largest displacement observed is for the carbonyl oxygen from residue Gly45, which is involved in copper and zinc binding. It moves by 0.03 nm towards the zinc, thereby reducing its distance to the metal from 0.29 nm in the copper protein to 0.23 nm in the derivative.  相似文献   

19.
Type 1 copper (T1Cu) proteins are electron transfer (ET) proteins involved in many important biological processes. While the effects of changing primary and secondary coordination spheres in the T1Cu ET function have been extensively studied, few report has explored the effect of the overall protein structural perturbation on active site configuration or reduction potential of the protein, even though the protein scaffold has been proposed to play a critical role in enforcing the entatic or “rack‐induced” state for ET functions. We herein report circular permutation of azurin by linking the N‐ and C‐termini and creating new termini in the loops between 1st and 2nd β strands or between 3rd and 4th β strands. Characterization by electronic absorption, electron paramagnetic spectroscopies, as well as crystallography and cyclic voltammetry revealed that, while the overall structure and the primary coordination sphere of the circular permutated azurins remain the same as those of native azurin, their reduction potentials increased by 18 and 124 mV over that of WTAz. Such increases in reduction potentials can be attributed to subtle differences in the hydrogen‐bonding network in secondary coordination sphere around the T1Cu center.  相似文献   

20.
Myeloperoxidase catalyzes the reaction of chloride ions with H2O2 to yield hypochlorous acid (HOCl), which can damage proteins. Human myoglobin (HMb) differs from other Mbs by the presence of a cysteine residue at position 110 (Cys110). This study has (i) compared wild-type and a Cys110Ala variant of HMb to assess the influence of Cys110 on HOCl-induced amino acid modification and (ii) determined whether HOCl oxidation of HMb affects the rate of ferric heme reduction by cytochrome b5. For wild-type HMb (HOCl:Mb ratio of 5:1 mol:mol), Cys110 was preferentially oxidized to a homodimeric or cysteic acid product—sulfenic/sulfinic acids were not detected. At a HOCl:Mb ratio 10:1 mol:mol, methionine (Met) oxidation was detected, and this was enhanced in the Cys110Ala variant. Tryptophan (Trp) oxidation was detected only in the Cys110Ala variant at the highest HOCl dose tested, with oxidation susceptibility following the order Cys > Met > Trp. Tyrosine chlorination was evident only in reactions between HOCl and the Cys110Ala variant and at a longer incubation time (24 h), consistent with the formation via chlorine-transfer reactions from preformed chloramines. HOCl-mediated oxidation of wild-type HMb resulted in a dose-dependent decrease in the observed rate constant for ferric heme reduction (approx two-fold at HOCl:Mb of 10:1 mol:mol). These data indicate that Cys110 influences the oxidation of HMb by HOCl and that oxidation of Cys, Met, and Trp residues is associated with a decrease in the one-electron reduction of ferric HMb by other proteins; such heme-Fe3+ reduction is critical to the maintenance of function as an oxygen storage protein in tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号