共查询到20条相似文献,搜索用时 0 毫秒
1.
Walter Stühmer 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1672)
Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å3 for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes. 相似文献
2.
Ca2+ binding to chromaffin vesicle matrix proteins: effect of pH, Mg2+, and ionic strength 总被引:5,自引:0,他引:5
Recently we found that Ca2+ within chromaffin vesicles is largely bound [Bulenda, D., & Gratzl, M. (1985) Biochemistry 24, 7760-7765]. In order to explore the nature of these bonds, we analyzed the binding of Ca2+ to the vesicle matrix proteins as well as to ATP, the main nucleotide present in these vesicles. The dissociation constant at pH 7 is 50 microM (number of binding sites, n = 180 nmol/mg of protein) for Ca2+-protein bonds and 15 microM (n = 0.8 mumol/mumol) for Ca2+-ATP bonds. When the pH is decreased to more physiological values (pH 6), the number of binding sites remains the same. However, the affinity of Ca2+ for the proteins decreases much less than its affinity for ATP (dissociation constant of 90 vs. 70 microM). At pH 6 monovalent cations (30-50 mM) as well as Mg2+ (0.1-0.5 mM), which are also present within chromaffin vesicles, do not affect the number of binding sites for Ca2+ but cause a decrease in the affinity of Ca2+ for both proteins and ATP. For Ca2+ binding to ATP in the presence of 0.5 mM Mg2+ we found a dissociation constant of 340 microM and after addition of 35 mM K+ a dissociation constant of 170 microM. Ca2+ binding to the chromaffin vesicle matrix proteins in the presence of 0.5 mM Mg2+ is characterized by a Kd of 240 microM and after addition of 15 mM Na+ by a Kd of 340 microM.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
The release of dense-core vesicles in bovine chromaffin cells is a model for the presynaptic process in neurons. It is usually studied by microamperometry of catecholamines with carbon fibers. Here we introduce transistor recording as a tool to study vesicle release. When we stimulate a chromaffin cell placed on a field-effect transistor, the gate voltage exhibits peaks that correlate with a simultaneously performed amperometric recording. We attribute the transistor signal to a release of protons from the extruded matrix of vesicles that lowers the extracellular pH and changes the electrical surface potential of the gate oxide. The rise time of the transistor signals is similar to that of amperometric responses, whereas their duration is distinctly longer. In a model computation, the rise time is identified with the extrusion of vesicle matrix into the narrow extracellular space between cell and gate oxide, and the decay time is attributed to pH equilibration through slow diffusion in the extruded matrix. Because the transistor recording relies on protons, it can be applied to acidic vesicles with electrochemically inactive hormones or transmitters. 相似文献
4.
Cilia play a wide range of critical roles in regulating cell motility,sensory signaling and metazoan development(Goetz and Anderson,2010;Reiter and Leroux,2017).Both motile cilia and pri-mary cilia consist of a basal body and a microtubule-based axoneme that is encompassed within the ciliary membrane.The formationand maintenance of ciliary structure depends on bidirectional intraflagellar transport(IFT):the kinesin-2 family motor proteins deliver ciliary precursors bound to the IFT particle protein complex from the ciliary base to the tip and the cytoplasmic dynein-2 recy-cles the anterograde IFT-protein machinery and ciliary turnover products back to the base(Scholey,2013;Reiter and Leroux,2017).Defects of ciliary structure and function lead to more than 35 types of systemic disorders in most human organ systems.which are collectively called ciliopathies(Reiter and Leroux,2017).187 established and 241 candidate ciliopathy-associated genes have been identified from the human genome(Reiter and Leroux,2017). 相似文献
5.
Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion 总被引:1,自引:0,他引:1
Rosé SD Lejen T Casaletti L Larson RE Pene TD Trifaró JM 《Journal of neurochemistry》2003,85(2):287-298
The presence of myosin II and V in chromaffin cells and their subcellular distribution is described. Myosin II and V distribution in sucrose density gradients showed only a strong correlation between the distribution of myosin V and secretory vesicle markers. Confocal microscopy images demonstrated colocalization of myosin V with dopamine beta-hydroxylase, a chromaffin vesicle marker, whereas myosin II was present mainly in the cell cortex. Cell depolarization induced, in a Ca2+ and time-dependent manner, the dissociation of myosin V from chromaffin vesicles suggesting that this association was not permanent but determined by secretory cycle requirements. Myosin II was also found in the crude granule fraction, however, its distribution was not affected by cell depolarization. Myosin V head antibodies were able to inhibit secretion whereas myosin II antibodies had no inhibitory effect. The pattern of inhibition indicated that these treatments interfered with the transport of vesicles from the reserve to the release-ready compartment, suggesting the involvement of myosin V and not myosin II in this transport process. The results described here suggest that myosin V is a molecular motor involved in chromaffin vesicle secretion. However, these results do not discard an indirect role for myosin II in secretion through its interaction with F-actin networks. 相似文献
6.
Function and organization of chromaffin vesicle 总被引:3,自引:0,他引:3
N Kirshner 《Life sciences》1974,14(7):1153-1167
7.
Low molecular mass GTP-binding proteins of adrenal chromaffin cells are present on the secretory granule 总被引:8,自引:0,他引:8
Adrenal medullary homogenates and chromaffin granule membranes were separated by SDS-polyacrylamide gel electrophoresis and GTP-binding proteins detected using [alpha-32P]GTP binding to nitrocellulose blots. Four GTP-binding polypeptides of 24, 22, 20 and 18 kDa were routinely found in medullary homogenates and all were also found in isolated chromaffin granule membranes. The GTP-binding polypeptides co-sedimented with granule membrane markers following separation on sucrose gradients. On the basis of trypsin sensitivity and resistance to extraction, the GTP-binding proteins appeared to be tightly bound to the cytoplasmic surface of the granules. One or more of the secretory granule GTP-binding proteins could be involved in exocytosis in adrenal chromaffin cells. 相似文献
8.
Neco P Giner D Viniegra S Borges R Villarroel A Gutiérrez LM 《The Journal of biological chemistry》2004,279(26):27450-27457
Modified herpes virus (amplicons) were used to express myosin regulatory light chain (RLC) chimeras with green fluorescent protein (GFP) in cultured bovine chromaffin cells to study myosin II implication in secretion. After infection, RLC-GFP constructs were clearly identified in the cytoplasm and accumulated in the cortical region, forming a complex network that co-localized with cortical F-actin. Cells expressing wild type RLC-GFP maintained normal vesicle mobility, whereas cells expressing an unphosphorylatable form (T18A/S19A RLC-GFP) presented severe restrictions in granule movement as measured by individual tracking in dynamic confocal microscopy studies. Interestingly, the overexpression of this mutant form of RLC also affected the initial secretory burst elicited by either high K(+) or BaCl(2), as well as the secretion induced by fast release of calcium from caged compounds in individual cells. Moreover, T18A/S19A RLC-GFP-infected cells presented slower fusion kinetics of individual granules compared with controls as measured by analysis of amperometric spikes. Taken together, our results demonstrate the implication of myosin II in the transport of vesicles, and, surprisingly, in the final phases of exocytosis involving transitions affecting the activity of docked granules, and therefore uncovering a new role for this cytoskeletal element. 相似文献
9.
Biosynthetic relationship between the major matrix proteins of adrenal chromaffin granules 总被引:5,自引:0,他引:5
The matrix of the chromaffin granule contains a family of acidic proteins, collectively known as the chromogranins. It has been suggested that this family results from protease action on the major component, chromogranin A. Evidence for this has now been obtained from in vitro translation of adrenal medullary messenger RNA and immunoprecipitation of translation products using an antiserum directed against chromogranin A, but which also recognises other chromogranins. 相似文献
10.
Sven Truckenbrodt Abhiyan Viplav Sebastian Jähne Angela Vogts Annette Denker Hanna Wildhagen Eugenio F Fornasiero Silvio O Rizzoli 《The EMBO journal》2018,37(15)
Aged proteins can become hazardous to cellular function, by accumulating molecular damage. This implies that cells should preferentially rely on newly produced ones. We tested this hypothesis in cultured hippocampal neurons, focusing on synaptic transmission. We found that newly synthesized vesicle proteins were incorporated in the actively recycling pool of vesicles responsible for all neurotransmitter release during physiological activity. We observed this for the calcium sensor Synaptotagmin 1, for the neurotransmitter transporter VGAT, and for the fusion protein VAMP2 (Synaptobrevin 2). Metabolic labeling of proteins and visualization by secondary ion mass spectrometry enabled us to query the entire protein makeup of the actively recycling vesicles, which we found to be younger than that of non‐recycling vesicles. The young vesicle proteins remained in use for up to ~ 24 h, during which they participated in recycling a few hundred times. They were afterward reluctant to release and were degraded after an additional ~ 24–48 h. We suggest that the recycling pool of synaptic vesicles relies on newly synthesized proteins, while the inactive reserve pool contains older proteins. 相似文献
11.
Recent evidence indicates that matrix vesicles (MV) interact with cartilage-specific collagens and other matrix proteins. Both type II and X collagens bind to and cosediment with MV. Our companion study shows that MV also are tightly coupled to proteoglycan link proteins (LP) and hyaluronic acid-binding region (HABR) in cartilage matrix. Here we sought to identify proteins responsible for the nexus between MV and matrix collagens using affinity chromatography with types I, II, and X collagen-Sepharose columns. Elution with NaCl step-gradients in the presence of nonionic detergent was used to assess the affinity between the MV proteins and the covalently attached collagens. Several MV proteins were found to bind to native type I, II, and X collagens but none bound to denatured type I collagen. Alkaline phosphatase, proteoglycan LP and HABR, and the 33- and 67-kDa annexins, bound with varying affinities to the native type I, II and X columns. In particular, LP and HABR, the 67-kDa annexin, and alkaline phosphatase bound with high affinity to the cartilage-specific collagens, although LP, HABR, and a 37-kDa protein also bound less tightly to native type I collagen. Thus, several MV proteins bind specifically to native type II and X collagens and should promote interaction between MV and the extracellular matrix. Such interactions may be important in MV formation, or in MV-mediated mineralization. 相似文献
12.
In neuroendocrine cells, such as adrenal chromaffin cells, the exocytosis of hormone-filled vesicles is triggered by a localized Ca(2+) increase that develops after the activation of voltage-dependent Ca(2+) channels. To reach the fusion competent state, vesicles have to go through a series of maturation steps that involve the detachment from cytoskeletal proteins, docking and priming. However, the fusion readiness of vesicles will also depend on their proximity to the calcium source. The immediately releasable pool is a small group of ready-to-fuse vesicles, whose fusion is tightly coupled to Ca(2+) entry through channels. Recent work indicates that such coupling is not produced by a random distribution between vesicles and channels, but would be the result of a specific interaction of immediately releasable vesicles with particular Ca(2+) channel subtypes. The immediately releasable pool is able to sustain, with high efficiency, the secretion triggered by the small and localized Ca(2+) gradients produced by brief depolarizations at low frequencies, like action potentials at basal conditions in adrenal chromaffin cells. 相似文献
13.
J De Block K Petit L Van Laer L Dillen E Roggen W De Potter 《Biochimica et biophysica acta》1990,1030(1):134-142
Calmodulin-binding proteins in chromaffin granule membrane and chromaffin cell plasma membranes have been investigated and compared. Chromaffin granules were purified by centrifugation over a 1.7 M sucrose layer. Plasma membranes were obtained in a highly purified form by differential and isopycnic centrifugation. Enzymatic determinations of 5'-nucleotidase, a generally accepted plasma membrane marker, showed a 40-50-fold enrichment as compared to the cell homogenate. Marker enzyme studies demonstrated only minimal contamination by other subcellular organelles. After solubilization with Triton X-100, calmodulin-binding proteins were isolated from chromaffin granule membranes and plasma membranes by affinity chromatography on a calmodulin/Sepharose 4B column. On two-dimensional polyacrylamide gelelectrophoresis a prominent protein (Mr = 65,000, pI ranging from 5.1 to 6) consisting of multiple spots, was present in the calmodulin-binding fraction from chromaffin granule membranes as well as from plasma membranes. Besides this 65 kDa protein both fractions had at least four groups of proteins in common. Also, proteins typical for either preparation were observed. In the calmodulin-binding protein preparations from chromaffin granule membranes a prominent spot with Mr = 80,000 and a pH ranging from 5.0 to 5.7 was present. This protein was enzymatically and immunologically identified as dopamine-beta-monooxygenase. 相似文献
14.
Detection of low molecular mass GTP-binding proteins in chromaffin granules and other subcellular fractions of chromaffin cells 总被引:3,自引:0,他引:3
A homogenate of purified chromaffin cells was fractionated, after removal of the nuclear fraction, by sucrose density gradient ultracentrifugation. The presence and subcellular localization of low molecular mass GTP-binding proteins was explored by incubation of blots of proteins from different subcellular fractions with [alpha-32P]GTP in the presence of Mg2+. The fractions enriched in intact chromaffin granule markers, i.e. catecholamines, chromogranin A, chromogranin B and cytochrome b-561 were also enriched in labelled GTP-binding proteins. Two major labelled components of 23 and 29 kDa were rapidly detected by autoradiography. Traces of 26 and 27 kDa components were also present. These components were detectable in both plasma and granule membranes. In addition to these components, the cytosolic fraction contained another GTP-binding protein of about 20 kDa. Binding of [alpha-32P]GTP was specific and dependent on Mg2+. By analogy to the findings reported in non-mammalian systems, the observations described here suggest the involvement of low molecular mass GTP-binding proteins in the chromaffin cell secretory process. 相似文献
15.
16.
17.
Before transmitter-filled synaptic vesicles can fuse with the plasma membrane upon stimulation they have to be primed to fusion competence. The regulation of this priming process controls the strength and plasticity of synaptic transmission between neurons, which in turn determines many complex brain functions. We show that CAPS-1 and CAPS-2 are essential components of the synaptic vesicle priming machinery. CAPS-deficient neurons contain no or very few fusion competent synaptic vesicles, which causes a selective impairment of fast phasic transmitter release. Increases in the intracellular Ca(2+) levels can transiently revert this defect. Our findings demonstrate that CAPS proteins generate and maintain a highly fusion competent synaptic vesicle pool that supports phasic Ca(2+) triggered release of transmitters. 相似文献
18.
19.
Rosa JM de Diego AM Gandía L García AG 《Biochemical and biophysical research communications》2007,357(4):834-839
Exocytosis and endocytosis are Ca(2+)-dependent processes. The contribution of high-voltage activated Ca(2+) channels subtypes to exocytosis has been thoroughly studied in chromaffin cells. However, similar reports concerning endocytosis are unavailable. Thus, we studied here the effects of blockers of L (nifedipine), N (omega-conotoxin GVIA) and P/Q (omega-agatoxin IVA) Ca(2+) channel on Ca(2+) currents (I(Ca)), Ca(2+) entry (Q(Ca)), as well as on the changes in membrane capacitance (C(m)) in perforated-patch voltage-clamped bovine adrenal chromaffin cells. Using 500-ms pulses to 0 or +10 mV, given from a holding potential of -80 mV and 2 mM Ca(2+) we found that omega-conotoxin GVIA affected little the exo-endocytotic responses while omega-agatoxin IVA markedly blocked those responses. However, nifedipine blocked little exocytosis but almost completely inhibited endocytosis. We conclude that L-type Ca(2+) channels seem to be selectively coupled to endocytosis. 相似文献
20.
1. High molecular weight non-histone proteins (NHP) were isolated from Morris hepatoma 7777 by Sephadex G-100, S-200 chromatography. 2. Specific polyclonal antibodies were raised against these NHP in rabbits. These antibodies recognized specific NHP components present in Morris hepatoma 7777 and 8994, but not in normal rat liver. Hepatoma-associated antigens are phosphoproteins. 3. Immunologically specific NHP of Morris hepatoma are intensively concentrated in nuclear matrix fraction. 相似文献