首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria can initiate apoptosis by releasing cytochrome c after undergoing a calcium-dependent permeability transition (MPT). Although the MPT is enhanced by oxidative stress and prevented by adenine nucleotides such as adenosine 5'-diphosphate (ADP), the hypothesis has not been tested that oxidants regulate the effects of exogenous adenine nucleotides on the MPT and cytochrome c release. We found that cytochrome c release from intact rat liver mitochondria depended strictly on pore opening and not on membrane potential, and that MPT-enhancing oxidative stress also augmented cytochrome c release. At low oxidative stress, micromolar (ADP) and low adenosine 5'-triphosphate (ATP)/ADP ratio inhibited the MPT and cytochrome c release, whereas ATP or high ATP/ADP had only a slight effect. In freshly isolated mitochondria, the time to half-maximal MPT was related to the log of the ATP/ADP ratio. This function was shifted to shorter times by oxidative stress which decreased ADP protection and caused ATP to accelerate the calcium-dependent MPT. By comparison, mitochondria treated with reducing agents and those isolated from septic rats were protected from the MPT by both nucleotides. These results indicate that oxidation-sensitive site(s) in the membrane regulate the effects of adenine nucleotides on the MPT. The oxidant-based differences in the effects of ADP and ATP on the pore support the novel hypothesis that failure of the cell to consume ATP and provide adequate ADP at the adenine nucleotide transporter during oxidative stress predisposes to cytochrome c release and initiation of apoptosis.  相似文献   

2.
Adenine nucleotide translocator (ANT) is a mitochondrial inner membrane protein involved in the ADP/ATP exchange and is a component of the mitochondrial permeability transition pore (PTP). In mammalian apoptosis, the PTP can mediate mitochondrial outer membrane permeabilization (MOMP), which is suspected to be responsible for the release of apoptogenic factors, including cytochrome c. Although release of cytochrome c in yeast apoptosis has previously been reported, it is not known how it occurs. Herein we used yeast genetics to investigate whether depletion of proteins putatively involved in MOMP and cytochrome c release affects these processes in yeast. While deletion of POR1 (yeast voltage-dependent anion channel) enhances apoptosis triggered by acetic acid, H(2)O(2) and diamide, CPR3 (mitochondrial cyclophilin) deletion had no effect. Absence of ADP/ATP carrier (AAC) proteins, yeast orthologues of ANT, protects cells exposed to acetic acid and diamide but not to H(2)O(2). Expression of a mutated form of Aac2p (op1) exhibiting very low ADP/ATP translocase activity indicates that AAC's pro-death role does not require translocase activity. Absence of AAC proteins impairs MOMP and release of cytochrome c, which, together with other mitochondrial inner membrane proteins, is degraded. Our findings point to a crucial role of AAC in yeast apoptosis.  相似文献   

3.
The adenine nucleotide translocator in apoptosis   总被引:8,自引:0,他引:8  
Belzacq AS  Vieira HL  Kroemer G  Brenner C 《Biochimie》2002,84(2-3):167-176
Alteration of mitochondrial membrane permeability is a central mechanism leading invariably to cell death, which results, at least in part, from the opening of the permeability transition pore complex (PTPC). Indeed, extended PTPC opening is sufficient to trigger an increase in mitochondrial membrane permeability and apoptosis. Among the various PTPC components, the adenine nucleotide translocator (ANT) appears to act as a bi-functional protein which, on the one hand, contributes to a crucial step of aerobic energy metabolism, the ADP/ATP translocation, and on the other hand, can be converted into a pro-apoptotic pore under the control of onco- and anti-oncoproteins from the Bax/Bcl-2 family. In this review, we will discuss recent advances in the cooperation between ANT and Bax/Bcl-2 family members, the multiplicity of agents affecting ANT pore function and the putative role of ANT isoforms in apoptosis control.  相似文献   

4.
Cardiolipin peroxidation plays a critical role in mitochondrial cytochrome c release and subsequent apoptotic process. Mitochondrial pore transition (MPT) is considered as an important step in this process. In this work, the effect of peroxidized cardiolipin on MPT induction and cytochrome c release in rat heart mitochondria was investigated. Treatment of mitochondria with micromolar concentrations of cardiolipin hydroperoxide (CLOOH) resulted in a dose-dependent matrix swelling, DeltaPsi collapse, release of preaccumulated Ca2+ and release of cytochrome c. All these events were inhibited by cyclosporin A and bongkrekic acid, indicating that peroxidized cardiolipin behaves as an inducer of MPT. Ca2+ accumulation by mitochondria was required for this effect. ANT (ADP/ATP translocator) appears to be involved in the CLOOH-dependent MPT induction, as suggested by the modulation by ligands and inhibitors of adenine nucleotide translocator (ANT). Together, these results indicate that peroxidized cardiolipin lowers the threshold of Ca2+ for MPT induction and cytochrome c release. This synergistic effect of Ca2+ and peroxidized cardiolipin on MPT induction and cytochrome c release in mitochondria, might be important in regulating the initial phase of apoptosis and also may have important implications in those physiopathological situations, characterized by both Ca2+ and peroxidized cardiolipin accumulation in mitochondria, such as aging, ischemia/reperfusion and other degenerative diseases.  相似文献   

5.
Fatty acids accumulate during myocardial ischemia and are implicated in ischemia-reperfusion injury and mitochondrial dysfunction. Because functional recovery after ischemia-reperfusion ultimately depends on the ability of the mitochondria to recover membrane potential (DeltaPsim), we studied the effects of fatty acids on DeltaPsim regulation, cytochrome c release, and Ca2+ handling in isolated mitochondria under conditions that mimicked aspects of ischemia-reperfusion. Long-chain but not short-chain free fatty acids caused a progressive and reversible (with BSA) increase in inner membrane leakiness (proton leak), which limited mitochondrial ability to support DeltaPsim. In comparison, long-chain activated fatty acids promoted 1). a slower depolarization that was not reversible with BSA, 2). cytochrome c loss that was unrelated to permeability transition pore opening, and 3). inhibition of the adenine nucleotide translocator. Together, these results impaired both mitochondrial ATP production and Ca2+ handling. Diazoxide, a selective opener of mitochondrial ATP-dependent potassium (KATP) channels, partially protected against these effects. These findings indicate that long-chain fatty acid accumulation during ischemia-reperfusion may predispose mitochondria to cytochrome c loss and irreversible injury and identify a novel cardioprotective action of diazoxide.  相似文献   

6.
Chávez E  Zazueta C  García N 《FEBS letters》1999,445(1):189-191
Addition of a low concentration of carboxyatractyloside (0.075 microM) renders mitochondria susceptible to the opening of the non-specific pore by 5 microM oleate, in a cyclosporin A-sensitive fashion. Matrix Ca2+ efflux as well as collapse of the transmembrane potential reveal permeability transition. The effect of oleate is reached after the titration, by carboxyatractyloside, of 38 pmol of adenine nucleotide translocase per mg mitochondrial protein. We propose that permeability transition may result from an additive action of carboxyatractyloside plus oleate on the ADP/ATP carrier.  相似文献   

7.
Growth factor withdrawal is associated with a metabolic arrest that can result in apoptosis. Cell death is preceded by loss of outer mitochondrial membrane integrity and cytochrome c release. These mitochondrial events appear to follow a relative increase in mitochondrial membrane potential. This change in membrane potential results from the failure of the adenine nucleotide translocator (ANT)/voltage-dependent anion channel (VDAC) complex to maintain ATP/ADP exchange. Bcl-xL expression allows growth factor-deprived cells to maintain sufficient mitochondrial ATP/ADP exchange to sustain coupled respiration. These data demonstrate that mitochondrial adenylate transport is under active regulation. Efficient exchange of ADP for ATP is promoted by Bcl-xL expression permitting oxidative phosphorylation to be regulated by cellular ATP/ADP levels and allowing mitochondria to adapt to changes in metabolic demand.  相似文献   

8.
Several studies have demonstrated that the mitochondrial membrane switches from selective to non-selective permeability because of its improved matrix Ca2+ accumulation and oxidative stress. This process, known as permeability transition, evokes severe dysfunction in mitochondria through the opening of a non-specific pore, whose chemical nature is still under discussion. There are some proposals regarding the components of the pore structure, e.g., the adenine nucleotide translocase and dimers of the F1 Fo-ATP synthase. Our results reveal that Ca2+ induces oxidative stress, which not only increases lipid peroxidation and ROS generation but also brings about both the collapse of the transmembrane potential and the membrane release of cytochrome c. Additionally, it is shown that Ca2+ increases the binding of the probe eosin-5-maleimide to adenine nucleotide translocase. Interestingly, these effects are diminished after the addition of ADP. It is suggested that pore opening is caused by the binding of Ca2+ to the adenine nucleotide translocase.  相似文献   

9.
Here, we describe the isolation of adenine nucleotide translocase-1 (ANT-1) in a screen for dominant, apoptosis-inducing genes. ANT-1 is a component of the mitochondrial permeability transition complex, a protein aggregate connecting the inner with the outer mitochondrial membrane that has recently been implicated in apoptosis. ANT-1 expression led to all features of apoptosis, such as phenotypic alterations, collapse of the mitochondrial membrane potential, cytochrome c release, caspase activation, and DNA degradation. Both point mutations that impair ANT-1 in its known activity to transport ADP and ATP as well as the NH(2)-terminal half of the protein could still induce apoptosis. Interestingly, ANT-2, a highly homologous protein could not lead to cell death, demonstrating the specificity of the signal for apoptosis induction. In contrast to Bax, a proapoptotic Bcl-2 gene, ANT-1 was unable to elicit a form of cell death in yeast. This and the observed repression of apoptosis by the ANT-1-interacting protein cyclophilin D suggest that the suicidal effect of ANT-1 is mediated by specific protein-protein interactions within the permeability transition pore.  相似文献   

10.
Mitochondrial membrane permeabilization by HIV-1 Vpr   总被引:1,自引:0,他引:1  
The mitochondrion is a privileged target for apoptosis-modulatory proteins of viral origin. Thus, viral protein R (Vpr) can target mitochondria and induce apoptosis via a specific interaction with the permeability transition pore complex (PTPC). Vpr cooperates with the adenine nucleotide translocator (ANT) to form large conductance channels and to trigger all the hallmarks of mitochondrial membrane permeabilization (MMP). The Vpr/ANT interaction is direct, since it is abolished by the addition of a peptide corresponding to the Vpr binding site of ANT, ADP, ATP, or by Bcl-2. Accordingly, Vpr modulates MMP through direct structural and functional interactions with PTPC proteins.  相似文献   

11.
Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane permeabilization and the ensuing release of apoptogenic proteins, and that these events are inhibited by growth factor signalling. Here we show that a hexokinase II N-terminal peptide selectively detaches hexokinase II from mitochondria and activates apoptosis. These events are abrogated by inhibiting two established permeability transition pore modulators, the adenine nucleotide translocator or cyclophilin D, or in cyclophilin D knock-out cells. Conversely, insulin stimulation or genetic ablation of the voltage-dependent anion channel do not affect cell death induction by the hexokinase II peptide. Therefore, hexokinase II detachment from mitochondria transduces a permeability transition pore opening signal that results in cell death and does not require the voltage-dependent anion channel. These findings have profound implications for our understanding of the pathways of outer mitochondrial membrane permeabilization and their inactivation in tumors.  相似文献   

12.
We investigated the role of the mitochondrial inner membrane permeability transition and subsequent release of cytochrome c into the cytosol during oxidative stress-evoked apoptosis. Sublethal oxidative stress was applied by treating L929 cells with 0.5 mM H2O2 for 90 min. Then the cellular localization of cytochrome c was examined by immunofluorescent staining and Western blotting. H2O2 treatment caused the permeability transition and pore formation, resulting in membrane depolarization and translocation of cytochrome c from the mitochondria into the cytosol. Pretreatment with cyclosporin A and aristolochic acid (to inhibit pore formation) significantly attenuated a reduction of the mitochondrial membrane potential, as well as signs of apoptosis such as DNA fragmentation, increased plasma membrane permeability, and chromatin condensation. Therefore, exposure to H2O2 caused the opening of permeability transition pores in the inner mitochondrial membrane. An essential role of cytosolic cytochrome c in the execution of apoptosis was demonstrated by its direct microinjection into the cytosol, thus bypassing the need for cytochrome c release from the mitochondrial intermembrane space. Microinjection of cytochrome c caused caspase-dependent apoptosis.  相似文献   

13.
Carboxyatractylate (CAT) and atractylate inhibit the mitochondrial adenine nucleotide translocator (ANT) and stimulate the opening of permeability transition pore (PTP). Following pretreatment of mouse liver mitochondria with 5 microM CAT and 75 microM Ca2+, the activity of PTP increased, but addition of 2 mM ADP inhibited the swelling of mitochondria. Extramitochondrial Ca2+ concentration measured with Calcium-Green 5N evidenced that 2 mM ADP did not remarkably decrease the free Ca2+ but the release of Ca2+ from loaded mitochondria was stopped effectively after addition of 2 mM ADP. CAT caused a remarkable decrease of the maximum amount of calcium ions, which can be accumulated by mitochondria. Addition of 2 mM ADP after 5 microM CAT did not change the respiration, but increased the mitochondrial capacity for Ca2+ at more than five times. Bongkrekic acid (BA) had a biphasic effect on PT. In the first minutes 5 microM BA increased the stability of mitochondrial membrane followed by a pronounced opening of PTP too. BA abolished the action about of 1 mM ADP, but was not able to induce swelling of mitochondria in the presence of 2 mM ADP. We conclude that the outer side of inner mitochondrial membrane has a low affinity sensor for ADP, modifying the activity of PTP. The pathophysiological importance of this process could be an endogenous prevention of PT at conditions of energetic depression.  相似文献   

14.
Induction of apoptosis often converges on the mitochondria to induce permeability transition and release of apoptotic proteins into the cytoplasm resulting in the biochemical and morphological alteration of apoptosis. Activation of a serine threonine kinase MEK kinase 1 (MEKK1) is involved in the induction of apoptosis. Expression of a kinase-inactive MEKK1 blocks genotoxin-induced apoptosis. Upon apoptotic stimulation, MEKK1 is cleaved into a 91-kDa kinase fragment that further induces an apoptotic response. Mutation of a consensus caspase 3 site in MEKK1 prevents its induction of apoptosis. The mechanism of MEKK1-induced apoptosis downstream of its cleavage, however, is unknown. Herein we demonstrate that full-length and cleaved MEKK1 leads to permeability transition in the mitochondria. This permeability transition occurs through opening of the permeability transition (PT) pore. Inhibiting PT pore opening and reactive oxygen species production effectively reduced MEKK1-induced apoptosis. Overexpression of MEKK1, however, failed to release cytochrome c from the mitochondria or activate caspase 9. Since Bcl2 regulates changes in mitochondria and blocks MEKK1-induced apoptosis, we determined that Bcl2 blocks MEKK1-induced apoptosis when targeted to the mitochondria. This occurs downstream of MEKK1 cleavage, since Bcl2 fails to block cleavage of MEKK1. In mouse embryonic fibroblast cells lacking caspase 3, the cleaved but not full-length MEKK1 induces apoptosis and permeability transition in the mitochondria. Overall, this suggests that cleaved MEKK1 leads to permeability transition contributing to MEKK1-induced apoptosis independent of cytochrome c release from the mitochondria.  相似文献   

15.
The release of cytochrome c from mitochondria is a critical step during apoptosis. In order to study this process, we have used a synthetic compound, MT-21, that is able to initiate release of cytochrome c from isolated mitochondria. We demonstrate that MT-21 significantly inhibits ADP transport activity in mitochondria and reduces binding of the adenine nucleotide translocase (ANT) to a phenylarsine oxide affinity matrix. These results suggest that ANT, one of the components of the mitochondrial permeability transition (PT) pore, is the molecular target for MT-21. In agreement with this, the MT-21-induced cytochrome c release was effectively inhibited in the presence of ANT ligands, and MT-21 could dissociate ANT from a complex with a glutathione S-transferase-cyclophilin D fusion protein. Interestingly, we also found that specific inhibitors of ANT such as MT-21 and atractyloside could induce cytochrome c release without mitochondrial swelling and that this event was highly dependent on the presence of Mg(2+). These results suggest that although ANT resides in the mitochondrial inner membrane, specific ANT inhibitors can induce cytochrome c release without having an effect on inner membrane permeability. Therefore, MT-21 can be a powerful tool for studying the mechanism of PT-independent cytochrome c release from mitochondria.  相似文献   

16.
The mitochondrial transition pore (MTP) is implicated as a mediator of cell injury and death in many situations. The MTP opens in response to stimuli including reactive oxygen species and inhibition of the electron transport chain. Sporadic Parkinson’s disease (PD) is characterized by oxidative stress and specifically involves a defect in complex I of the electron transport chain. To explore the possible involvement of the MTP in PD models, we tested the effects of the complex I inhibitor and apoptosis-inducing toxin N-methyl-4-phenylpyridinium (MPP+) on cyclosporin A (CsA)-sensitive mitochondrial swelling and release of cytochrome c. In the presence of Ca2+ and Pi, MPP+ induced a permeability transition in both liver and brain mitochondria. MPP+ also caused release of cytochrome c from liver mitochondria. Rotenone, a classic non-competitive complex I inhibitor, completely inhibited MPP+-induced swelling and release of cytochrome c. The MPP+-induced permeability transition was synergistic with nitric oxide and the adenine nucleotide translocator inhibitor atractyloside, and additive with phenyl arsine oxide cross-linking of dithiol residues. MPP+-induced pore opening and cytochrome c release were blocked by CsA, the Ca2+ uniporter inhibitor ruthenium red, the hydrophobic disulfide reagent N-ethylmaleimide, butacaine, and the free radical scavenging enzymes catalase and superoxide dismutase. MPP+ neurotoxicity may derive from not only its inhibition of complex I and consequent ATP depletion, but also from its ability to open the MTP and to release mitochondrial factors including Ca2+ and cytochrome c known to be involved in apoptosis.  相似文献   

17.
It has been shown in mammalian systems that the mitochondria can play a key role in the regulation of apoptosis by releasing intermembrane proteins (such as cytochrome c) into the cytosol. Cytochrome c released from the mitochondria to the cytoplasm activates proteolytic enzyme cascades, leading to specific nuclear DNA degradation and cell death. This pathway is considered to be one of the important regulatory mechanisms of apoptosis. Previous studies have shown that endosperm cell development in wheat undergoes specialized programmed cell death (PCD) and that waterlogging stress accelerates the PCD process; however, little is known regarding the associated molecular mechanism. In this study, changes in mitochondrial structure, the release of cytochrome c, and gene expression were studied in the endosperm cells of the wheat (Triticum aestivum L.) cultivar “huamai 8” during PCD under different waterlogging durations. The results showed that waterlogging aggravated the degradation of mitochondrial structure, increased the mitochondrial permeability transition (MPT), and decreased mitochondrial transmembrane potential (ΔΨm), resulting in the advancement of the endosperm PCD process. In situ localization and western blotting of cytochrome c indicated that with the development of the endosperm cell, cytochrome c was gradually released from the mitochondria to the cytoplasm, and waterlogging stress led to an advancement and increase in the release of cytochrome c. In addition, waterlogging stress resulted in the increased expression of the voltage-dependent anion channel (VDAC) and adenine nucleotide translocator (ANT), suggesting that the mitochondrial permeability transition pore (MPTP) may be involved in endosperm PCD under waterlogging stress. The MPTP inhibitor cyclosporine A effectively suppressed cell death and cytochrome c release during wheat endosperm PCD. Our results indicate that the mitochondria play important roles in the PCD of endosperm cells and that the increase in mitochondrial damage and corresponding release of cytochrome c may be one of the major causes of endosperm PCD advancement under waterlogging.  相似文献   

18.
Mitochondria and cell death   总被引:38,自引:0,他引:38  
Mitochondria play a central role in both apoptosis and necrosis through the opening of the mitochondrial permeability transition pore (MPTP). This is thought to be formed through a Ca(2+)-triggered conformational change of the adenine nucleotide translocase (ANT) bound to matrix cyclophilin-D and we have now demonstrated this directly by reconstitution of the pure components. Opening of the MPTP causes swelling and uncoupling of mitochondria which, unrestrained, leads to necrosis. In ischaemia/reperfusion injury of the heart we have shown MPTP opening directly. Recovery of hearts correlates with subsequent closure, and agents that prevent opening or enhance closure protect from injury. Transient MPTP opening may also be involved in apoptosis by initially causing swelling and rupture of the outer membrane to release cytochrome c (cyt c), which then activates the caspase cascade and sets apoptosis in motion. Subsequent MPTP closure allows ATP levels to be maintained, ensuring that cell death remains apoptotic rather than necrotic. Apoptosis in the hippocampus that occurs after a hypoglycaemic or ischaemic insult is triggered by this means. Other apoptotic stimuli such as cytokines or removal of growth factors also involve mitochondrial cyt c release, but here there is controversy over whether the MPTP is involved. In many cases cyt c release is seen without any mitochondrial depolarization, suggesting that the MPTP does not open. Recent data of our own and others have revealed a specific outer-membrane cyt c-release pathway involving porin that does not release other intermembrane proteins such as adenylate kinase. This is opened by pro-apoptotic members of the Bcl-2 family such as BAX and prevented by anti-apoptotic members such as Bcl-X(L). Our own data suggest that this pathway may interact directly with the ANT in the inner membrane at contact sites.  相似文献   

19.
When mammalian mitochondria are exposed to high calcium and phosphate, a massive swelling, uncoupling of respiration, and release of cytochrome c occur. These changes are mediated by opening of the mitochondrial permeability transition pore (MPTP). Activation of the MPTP in vivo in response to hypoxic and oxidative stress leads to necrotic and apoptotic cell death. Considering that embryos of the brine shrimp Artemia franciscana tolerate anoxia for years, we investigated the MPTP in this crustacean to reveal whether pore opening occurs. Minimum molecular constituents of the regulated MPTP in mammals are believed to be the voltage-dependent anion channel, the adenine nucleotide translocators, and cyclophilin D. Western blot analysis revealed that mitochondria from A. franciscana possess all three required components. When measured with a calcium-sensitive fluorescent probe, rat liver mitochondria are shown to release matrix calcium after addition of >/=100 microM extramitochondrial calcium (MPTP opening), whereas brine shrimp mitochondria continue to take up extramitochondrial calcium and do not release internal stores even up to 1.0 mM exogenously added calcium (no MPTP opening). Furthermore, no swelling of A. franciscana mitochondria in response to added calcium was observed, and no release of cytochrome c could be detected. HgCl(2)-dependent swelling and cytochrome c release were readily confirmed, which is consistent with the presence of an "unregulated pore." Although the absence of a regulated MPTP in A. franciscana mitochondria could contribute to the extreme hypoxia tolerance in this species, we speculate that absence of the regulated MPTP may be a general feature of invertebrates.  相似文献   

20.
This study shows the effects of the flavonoid quercetin on diverse mitochondrial functions, among them membrane permeability. Our findings indicate that the addition of 50 μM quercetin did not produce reactive oxygen derived species; however, it inhibited the oxidative stress induced after the addition of Fe2/H2O2 by about 38%. At this concentration, quercetin also promoted a fast calcium release, inhibited oxidative phosphorylation, stimulated oxygen consumption, and decreased membrane potential. In addition 50 μM quercetin inhibited the adenine nucleotide translocase (ANT) by 46%. These effects induced the opening of the permeability transition pore and release of cytochrome c, by its interaction with a component of the non-specific pore complex, fixed to the carrier in the conformation c, as carboxyatractyloside does. Quercetin-induced permeability transition pore opening was inhibited by 0.5 μM cyclosporin A, but, interestingly, the release of cytochrome c was not inhibited by the immunosuppressor, as quercetin was found to disrupt the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号