首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Turgor-controlled K+ fluxes and their pathways in Escherichia coli   总被引:15,自引:0,他引:15  
Escherichia coli like most gram-negative bacteria with walls maintains a cytoplasmic osmolarity exceeding that of the medium; the resulting hydrostatic pressure (turgor pressure) pushes the cytoplasmic membrane against the peptidoglycan and creates a tension in the two envelopes. Potassium is the only cation which takes part in the regulation of cellular osmolarity. The adaptation of intracellular K+ concentration to external osmolarity involves K+ turgor-controlled fluxes. When the medium osmolarity is raised an osmodependent influx of K+ can be observed; this is carried out by the K+ transport system TrkA which can also taken up rubidium. A specific and unidirectional pathway allows K+ ions to flow out of the cell when the medium osmolarity is decreased; this pathway reveals two characteristics: it has no affinity for rubidium and it can be blocked by the blockers of eukaryotic K+ channels. Osmodependent fluxes are turned on immediately after the medium osmolarity is disturbed; in contrast, they are turned off gradually as the rate of K+ fluxes approach zero. The rate of K+ influx seems to depend on the level of internal osmolarity and not on the extent of the increase in medium osmolarity. The rate of the efflux is directly proportional to the decrease in medium osmolarity and is independent on the level of internal osmolarity.  相似文献   

2.
Extracellular ATP rendered the plasma membrane of transformed mouse fibroblasts permeable to normally impermeant molecules. This permeability change was prevented by increasing the ionic strength of the isotonic medium with NaCl. Conversely, the cells exhibited increased sensitivity to ATP when the NaCl concentration was decreased below isotonicity, when the KCl concentration was increased above 5 mM while maintaining isotonicity, and when the pH of the medium was raised above 7.0. These conditions as well as the addition of ATP itself caused cell swelling. However, the effect of ATP was independent of cell volume and dependent upon the ionic strength and not the osmolarity of the medium since 1) addition of sucrose to isotonic medium did not prevent permeabilization although media made hypertonic with either sucrose or NaCl caused a decrease in cell volume; and 2) addition of sucrose or NaCl to hypotonic media caused a decrease in cell volume, but only NaCl addition decreased the response to ATP. Conditions that have been shown to inhibit plasma membrane proteins that play a reciprocal role in cell volume regulation had reciprocal effects on the permeabilization process, even though the effect of ATP was independent of cell volume. For example, inhibition of the Na+,K+-ATPase by ouabain increased sensitivity of cells to ATP while conditions which inhibit Na+,K+,Cl- -cotransporter activity, such as treatment of the cells with the diuretics furosemide or bumetanide or replacement of sodium chloride in the medium with sodium nitrate or thiocyanate, inhibited permeabilization. The furosemide concentration that inhibited permeabilization was greater than the concentration that inhibited Na+,K+,Cl- -cotransporter-mediated 86Rb+ (K+) uptake, suggesting that the effect of furosemide on the permeabilization process may not be specific for the Na+,K+,Cl- -cotransporter.  相似文献   

3.
1. In the presence of near-physiological glutamine concentrations, exposure of perfused rat liver to hypotonic perfusion media switched glutamine balance across the liver from net release to net uptake. This was due to both stimulation of flux through glutaminase and inhibition of flux through glutamine synthetase. Conversely, during exposure to hypertonic media, net glutamine release from the liver increased due to inhibition of glutaminase flux and slight stimulation of flux through glutamine synthetase. The effect of perfusate osmolarity on glutaminase flux was observed at an NH4Cl concentration (0.5 mM) sufficient for near-maximal ammonia stimulation of glutaminase. This indicates the involvement of different mechanisms of glutaminase flux control by extracellular osmolarity changes and ammonia. The effects of anisotonicity on flux through glutamine-metabolizing enzymes were fully reversible. Glutamine (0.6 mM) stimulated urea synthesis from NH4Cl (0.5 mM) during hypotonic and normotonic conditions. 2. Exposure to hypotonic and hypertonic media led, after initial liver-cell swelling and shrinkage, respectively to volume-regulatory K+ fluxes which largely restored the initial liver-cell volume despite the continuing osmotic challenge. Even after completion of cell-volume regulatory K+ fluxes, the effects of perfusate osmolarity on hepatic glutamine metabolism persisted. This indicates that in anisotonicity the liver cell is left in an altered metabolic state, even after completion of volume-regulatory responses. 3. During perfusion with isotonic media, addition of glutamine (3 mM) led to an increase of liver mass by about 4% within 2 min, which was accompanied by a net K+ uptake by the liver. Thereafter, the new steady state of increased liver mass was maintained throughout glutamine infusion. When the liver mass had reached this new steady state, a net release of K+ from the liver of about 3 mumol/g liver was observed during the following 10 min. Withdrawal of glutamine was followed by a slow reuptake of K+ and the liver mass returned to its initial value. Following exposure to glutamine (3 mM), the intracellular glutamine concentration (as calculated from glutamine tissue levels, taking into account the extracellular space determined with the [3H]inulin technique) rose from about 1 mM to 30-35 mM within about 12 min, indicating a 10-12-fold concentrative uptake of glutamine into the liver cells and an osmotic challenge for the hepatocyte. When intracellular glutamine had reached its steady-state concentration, net K+ efflux from the liver was also terminated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Summary Red blood cells of the marine teleost,Opsanus tau (oyster toadfish), were characterized as to their normal hemoglobin, ion and water contents. Cells were exposed to ouabain containing, hyposmotic salt solutions (osmolarity reduced to 2/3 of normal) in which the cation or anion composition was varied. It was found that the initial cell volume expansion due to water influx was independent of the anion present. However, a secondary volume reduction was dependent on the presence of chloride or bromide anions. During volume reduction, cellular potassium and chloride ion contents fell by about equal amounts. Potassium loss was commensurate to the total amount of potassium ions detected extracellularly about 1.5h after the initial osmotic shock. No major changes were seen in the cellular sodium ion contents. When chloride ions within the cells and in the suspending medium were replaced by nitrate, iodide or thiocyanate, the cells failed to return to volumes close to those of isosmotically suspended controls, and the cellular potassium content also remained constant. In hypotonic potassium chloride the cells failed to extrude potassium chloride and water, and hence retained their expanded volume. Neither potassium loss nor volume decrease occurred in cells swollen in hypotonic sodium chloride media containing furosemide or 4,4 diisothiocyano-2,2-stilbene-disulfonic acid (DIDS). These two compounds are known inhibitors of monovalent cation cotransport and anion self exchange, respectively, in mammalian red cells. Hence toadfish red cells respond to osmotic swelling primarily by activation of an ouabain-insensitive, chloride dependent potassium transport system which is sensitive to inhibition by furosemide and DIDS.  相似文献   

5.
Effects of changes in osmolarity on isolated human airways   总被引:2,自引:0,他引:2  
The effects of hypo- and hyperosmolarity on the function of isolated human airways were studied. Changes in osmolarity induced an increasing bronchoconstriction that was proportional to the magnitude of the change in osmolarity. Hypertonicity-induced airway narrowing resulted when buffer was made hypertonic with sodium chloride or mannitol but not with urea. The airways showed no tachyphylaxis to repetitive exposure to hypo- and hypertonic buffer of 200 and 600 mosM, respectively. The bronchoconstriction was not secondary to stimulation of H1 or leukotriene C4/D4 receptors or the release of prostaglandins in the preparation. The bronchoconstriction in hypotonic buffer was totally dependent on extracellular calcium, whereas in hypertonic buffer the bronchoconstriction seemed partially dependent on intracellular calcium release. Isoprenaline prevented the bronchoconstriction in hyper- or hypotonic buffer of 450 and 250 mosM but not in buffer of 600 and 150 mosM. It is concluded that hypo- and hypertonic buffers lead to bronchoconstriction via different mechanisms, which relate to influx of extracellular calcium in hyposmolar buffer and probably to release of calcium from intracellular stores in hypertonic buffer. In strongly hypertonic buffer, part of the bronchoconstriction may be due to osmotic shrinkage. The relevance of our data for the mechanism of bronchoconstriction after inhalation of hypo- or hypertonic saline depends on whether changes in osmolarity around the airway smooth muscle occur in asthmatics but not in normal subjects, and this has not yet been established.  相似文献   

6.
A study has been made with human red cells of sodium movements that are sensitive to the drug furosemide. The aim was to see if furosemide-sensitive movements that are symmetrical (exchange) became asymmetrical (net transport) on replacement of chloride with nitrate as the major external anion. Cells were incubated for 4 h at 37 degrees C with 140 mM sodium, and chloride or nitrate as the principal anion. Under a variety of conditions (presence and absence of ouabain or furosemide, or both) the cell sodium concentration was always higher when chloride was replaced with nitrate. The cells became leakier to sodium. Tracer studies indicated that, in contrast to the results in chloride medium, the decrease in sodium influx was greater than the fall in efflux when furosemide was added to cells in nitrate medium. The results confirm that the sensitivity of sodium efflux to furosemide depended on chloride. However, influx showed a different sensitivity in that furosemide still inhibited in cells incubated in nitrate medium. The stimulation of sodium influx with nitrate medium was independent of external potassium (10-50 mM) and the furosemide-sensitive influx was also constant. It is concluded that symmetrical transmembrane sodium movements with cells in chloride medium became downhill asymmetrical in nitrate medium, giving a net gain of cell sodium that was insensitive to ouabain and sensitive to furosemide. The drug thus partly retarded the gain of cell sodium that otherwise occurred in the somewhat leaky cells.  相似文献   

7.
The influence of hypotonic swelling and hypertonic shrinking on cytosolic pH in synaptosomes was investigated. It was shown that decreasing the osmolarity of incubation medium to 230 mOsm leads to alkalization and increasing the osmolarity of incubation medium to 810 mOsm leads to acidification. Alkalization was inhibited by amiloride, indicating the involvement of the Na+/H+ exchanger. The acidification of cytosol upon hypertonic shrinking was insensitive, to amiloride and the inhibitor of Na+, K+, Cl- cotransport bumetanide. Thus, the Na+/H+ exchange in synaptosomes is activated by hypotonic swelling but not hypertonic shrinking, in contrast with erythrocytes and lymphocytes, which have been investigated earlier.  相似文献   

8.
A decrease in the osmolarity of incubation medium is accompanied by calcium influx in neuronal presynaptic endings. We studied the influence of Ca2+ on exocytosis induced by hypotonic shock using the hydrophilic fluorescent dye acridine orange and the hydrophobic fluorescent dye FM2-10. It was shown using acridine orange that lowering of osmolarity to 230 mOsm/l induces exocytosis both in calcium-containing and calcium-free medium. By contrast, we were able to demonstrate calcium-dependence of exocytosis using styryl dye FM2-10. Lowering of osmolarity leads to increase of [3H]D-aspartate and [3H]GABA release in calcium-free medium. Addition of calcium inhibits hypotonic-induced neurotransmitter release. Decreasing of NaCl concentration to 92 mM in isotonic medium is able to induce d-aspartate and GABA release. Thus, our data suggest that hypotonic swelling induces calcium-independent exocytosis possibly by a "kiss and run" mechanism. Calcium influx mediated by stretch channels is able to provoke full fusion between plasma membrane and synaptic vesicles. [3H]D-aspartate and [3H]GABA released by hypotonic shock is determined by sodium lowering rather than by osmolarity decreasing itself.  相似文献   

9.
Volume-sensitive K transport in human erythrocytes   总被引:13,自引:5,他引:8       下载免费PDF全文
Studies have been carried out on human erythrocytes to examine the alterations of K transport induced by swelling or shrinking the cells by osmotic and isosmotic methods. Hypotonic swelling of erythrocytes (relative cell volume, 1.20) resulted in a striking, four- to fivefold augmentation in the ouabain-resistant K influx over the value obtained at a normal cell volume. Shrinking the cells in hypertonic media resulted in a small but statistically significant reduction in K influx. Three different methods of varying cell volume gave similar results. These include the addition of sucrose and of NaCl to hypotonic media and the isosmotic (nystatin) method. The major fraction of the K influx in swollen cells is specific in its requirement for Cl or Br and is not supported by thiocyanate, iodide, nitrate, methylsulfate, or acetate. Bumetanide (0.1 mM), MK-196 (0.2 mM), and piretanide (1 mM) are poorly effective in suppressing K uptake in swollen cells, but at higher concentrations, bumetanide (1 mM) inhibits 80% of the Cl-dependent K influx in swollen cells. The bumetanide concentration required to inhibit 50% of the Cl-dependent K influx is 0.17 mM. The volume-sensitive K influx is independent of both extracellular and intracellular Na, so that the (Na + K + 2Cl) cotransport pathway is not a likely mediator of the volume-sensitive K transport. A variety of inhibitors of the Ca-activated K channel are ineffective in suppressing swelling-induced K influx. Like K uptake, the efflux of K is also enhanced by cell swelling. Swelling-activated K efflux is Cl dependent, is independent of extracellular and intracellular Na, and is observed with both hypotonic and isosmotic methods of cell swelling. The activation of K efflux by cell swelling is observed in K-free media, which suggests that the volume-sensitive K transport pathway is capable of net K efflux. The addition of external K to hypotonic media resulted in an increase in K efflux compared with the efflux in K-free media, and this increase was probably due to K/K exchange. Thus, hypotonic or isosmotic swelling of human erythrocytes results in the activation of a ouabain-resistant, Cl-dependent, Na-independent transport pathway that is capable of mediating both net K efflux and K/K exchange.  相似文献   

10.
1. The responses of primary monolayer astrocyte cultures prepared from neonatal rat brains to hyper- and hypotonic media and to the addition of L-glutamic acid were examined as part of a systematic approach to use these cultures to obtain information on the mechanisms of the volume changes seen in astroglial cells in situ. 2. Addition of 200 mM mannitol to the medium to make it hypertonic caused cell shrinkage as measured with [14C]3-O-methyl-D-glucose, and also activated K+ and Cl- uptake measured with 86Rb+ and 36Cl- respectively. The increased ion uptake was completely inhibited by 0.1 mM bumetanide, showing that the Na+ + K+ + 2 Cl- co-transport system was being activated by cell shrinkage. 3. Studies of 86Rb+ uptake as a function of external K+ and hypertonic media showed a complex pattern. Increased bumetanide-sensitive, hypertonic-stimulated uptake of 86Rb+ was seen up to 20 mM K+0, with maximum stimulation being first reached at around 2 to 5 mM K+. At concentrations greater than 20 mM K+0 there was a further increase in bumetanide-sensitive 86Rb+ uptake, but there was no stimulation of this uptake by hypertonicity. There were also increases in bumetanide-insensitive 86Rb+ fluxes at [K+]0 higher than 20 mM that may have been due to opening of voltage-dependent K+ channels; this increased 86Rb+ flux was decreased in hypertonic medium. 4. When primary astrocyte cultures were swollen in hypotonic medium there was a rapid increase in volume as measured with [14C] 3-O-methyl-D-glucose, which then decreased in the continued presence of hypotonic medium. Thus, these cells exhibit volume regulatory decrease or RVD, as described for other cells. The possible ionic bases of this phenomenon have not yet been fully examined but the initial RVD did not appear to stimulate a furosemide-sensitive cotransport system. 5. Glutamate has been implicated as a possible endogenous effector of volume change in astrocytes. In the presence of ouabain, L-glutamate led to swelling of cultured astrocytes and increased uptake of 22Na+ and 36Cl-. It is suggested that this is due to uptake of L-glutamate with cotransport of Na+ and Cl-. Increased uptake was also seen for 86Rb+ in the absence of ouabain, and this was not seen in the absence of Na+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The effect of salinity on nitrate influx, efflux, nitrate net uptake rate and net nitrogen translocation to the shoot was assessed in a 15N steady state labelling experiment in the halophyte Plantago maritima L. raised for 14 days on solution supplied with 50, 100 and 200 mol m–3 sodium chloride or without sodium chloride. Additionally, salinity induced changes in root morphology were determined. Specific root length increased upon exposure to elevated sodium chloride concentrations due to variations in biomass allocation and length growth of the tap root. Changes in root morphology, however, had a minor effect on nitrate fluxes when expressed on a root fresh weight basis. The decreased rate of nitrate net uptake in plants grown on elevated levels of sodium chloride was almost entirely due to a decrease in nitrate influx. Expressed as a proportion of influx, nitrate efflux remained unchanged and was even lower at the highest salinity level. At all sodium chloride concentrations applied the initial rate of nitrogen net translocation to the shoot decreased relative to the rate of nitrate net uptake. It is concluded that under steady state conditions the negative effect of sodium chloride on the rate of nitrate net uptake at non growth-limiting salinity levels was due to the interaction between sodium chloride and nitrate transporters in the root plasma membrane and/or processes mediating the translocation of nitrogen compounds, possibly nitrate, to the shoot.  相似文献   

12.
Cell volume regulation has been studied during isolated dog liver perfusion. In presence of ouabain (10(-4) M) rapid but quantitatively matched exchange of K for Na occurs and the cellular volume is maintained until (90 min later) intracellular K concentration falls below 80 mEq/litre. Additional mechanism of protection of cell volume as loss of intracellular anions should also play a r?le since ouabain produces rapidly a membrane depolarization and chloride gain. A similar sequence of events is obtained when inhibition of the sodium pump is produced by anoxia but in this case the chloride gain in excess of cation gain is particularly marked. Submitted to an hypotonic shock the hepatocytes swell but tend to partially recover their volume by loosing K, indeed when osmolarity is corrected the cells maintain a sub-normal volume. Ouabain inhibits (or masks?) this iso-osmotic regulation. When submitted to an hypertonic medium a reduced cell volume is obtained and maintained for hours even in presence of ouabain, which produces a Na/K exchange at the same rate as in normal conditions.  相似文献   

13.
The effect of hypotonic and hypertonic shock on exocytosis in rat brain synaptosomes was studied using the fluorescent dye acridine orange. It was shown that an increase in medium osmolarity leads to calcium-independent exocytosis. The response of the probe was directly proportional to the amount of osmolithes added. A decrease in medium osmolarity to 230 mOsm led to an increase of acridine orange fluorescence, which is comparable with exocytosis occurring by the action of 15 mM KCl. This effect was independent of calcium concentration. It is assumed that, under hypotonic shock, part of neurotransmitters are released from the vesicular pool.  相似文献   

14.
目的:研究非等渗压浓度对血管内皮细胞NO合成酶活性的影响,并探索其发生机制。方法:使血管内皮细胞暴露于低渗(205mOsm)或高渗透压(410mOsm)培养液,用Griess法测定NO合成酶(NOS)活性,以Northern blot ting观测细胞iNOS和eNOS基因表达的变化。结果: 非等渗压浓度可使血管内皮细胞中NOS活性显著升高。细胞NOS活性变化具有明显的时间效应规律,低渗透压浓度效应产生的效应早于高渗透压浓度,且低渗透压浓度的影响较高渗透压浓度更为明显。Dexamethasone对这种非等渗透压诱导的NOS活性没有明显作用,给予cycloheximide,不影响非等渗压诱导的这种差异。Nothern blot分析表明:非等渗压浓度不诱导iNOS基因表达,而使eNOSmRNA表达增加。结论:非等渗透压浓度诱导血管内皮细胞NOS活性升高,eNOS基因表达增强是其主要机制之一。  相似文献   

15.
1. The effect of thiocyanate on chloride and sodium fluxes across the gill was studied in the goldfish Carassius auratus. At low external chloride concentrations, addition of SCN- to the bathing solution markedly inhibited chloride influx and efflux, the net flux being reversed, SCN- injection was without effect. SCN- had no effect on sodium fluxes when injected or added to the external medium. 2. The inhibition of chloride influx by SCN- was of a mixed type involving simultaneous modifications of the affinity constant of the carrier for Cl- and of the maximal Cl- influx. The affinity constant of the carrier for SCN- was 10 times lower than that for Cl-. 3. The gill of the goldfish was found to be practically impermeable to SCN-. 4. In the presence of external SCN-, the Cl-/HCO3- exchange was reversed: Cl- was lost against HCO3- which is absorbed. This suggests an obligatory exchange. 5. Exchange diffusion for chloride was also demonstrated. 6. A kinetic model is proposed to explain chloride and bicarbonate transport across the gill of Carassius auratus.  相似文献   

16.
Frog erythrocytes were incubated in iso- or hypotonic media containing 10 mmol/l Rb+ and 0.1 mmol/l ouabain and both Rb+ uptake and K+ loss were measured simultaneously. Rb+ uptake by frog red cells in iso- and hypotonic media was reduced by 30-60% in the presence of 0.01-0.1 mmol/l [(dihydroindenyl)oxy] alkanoic acid (DIOA) or 0.5-1.0 mmol/l furosemide. Furosemide inhibited K+ loss from frog erythrocytes incubated in hypotonic media but did not affect it in isotonic media. DIOA at a concentration of 0.05 mmol/l inhibited of K+ loss from frog erythrocytes in both iso- and hypotonic media. At the concentrations of 0.01 and 0.02 mmol/l DIOA significantly suppressed K+ loss in a K+-free chloride medium but not in a K+-free nitrate medium. The Cl(-)-dependent K+ loss was completely blocked at a concentration of 0.1 mmol/l DIOA and the concentration required for 50% inhibition of K-Cl cotransport was approximately 0.015 mmol/l. However, the inhibitory effect of DIOA on K-Cl cotransport was masked by an opposite stimulatory effect on K+ transport which was also observed in nitrate medium. Quinine in a concentration of 0.2-1.0 mmol/l was able to inhibit Rb+ uptake and K+ loss only in hypotonic media. In isotonic media, quinine produced a stimulation of Rb+ uptake and K+ loss. A three to five-fold activation of Rb+ uptake and K+ loss was consistently observed in frog erythrocytes treated with 0.05-0.2 mmol/l 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). In contrast, another stilbene derivative 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid (SITS) had no effect on K+ transport in the cells. Thus, of these drugs tested in the present study only DIOA at low concentrations may be considered as a selective blocker of the K-Cl cotransporter in the frog red blood cells.  相似文献   

17.
The rabbit retina was used to study, in vitro, the responses of central nervous tissue to changes in extracellular osmolarity. After isolation, retinas were incubated in either hypertonic or hypotonic medium containing 80 milliosmols more or 80 milliosmols less sodium chloride than the isotonic control medium. After fixation and embedding, comparable areas of each retina were sectioned and studied with the phase and electron microscopes. The diameters of receptor cell inner segments, synapses, nuclei, and mitochondria were measured on micrographs; mean nuclear areas and volumes were calculated. Cutouts from micrographs also provided areas and volumes of the receptor cell nucleus and its 'surround' of axons, dendrites, glial processes, and extracellular space. In general, hypertonic incubation produced decreases in the linear dimensions, areas, and volumes of the receptor cell, its nucleus, and its mitochondria that were consistent with their behaviour as osmometers. After hypotonic incubation, the increases in the diameters of inner segments, synapses, and mitochondria were in the predicted range. The increases for the nuclei themselves, and the nuclei and their 'surround' were less than expected. This may have been due to the failure of the preparative techniques to maintain the swollen state of these larger structures.  相似文献   

18.
Sheep erythrocytes of high and low potassium types were incubated in non-haemolytic hypotonic and hypertonic media for 4-5 h at 30 degrees. After initial swelling or shrinking, they readjusted their volume toward their initial isotonic volume. The volume regulation was associated with specific changes in cation fluxes. In the swollen cells, efflux of both sodium and potassium was increased and influx of both cations was slightly decreased; the converse was true for the shrunken cells. All four fluxes were changed in a direction that led to return to normal volume. The difference in the response of the two types of sheep erythrocytes to changes of extracellular fluid osmolality resided in the different activity of their cation transport systems. It is concluded that sheep erythrocytes possess some means of regulating their volume in vitro which is linked to cation permeability. The exact nature of the physical mechanisms by which they accomplish this remains to be elucidated.  相似文献   

19.
Human erythrocytes were incubated in haemolytic salt or sucrose media and the amount of potassium and haemoglobin released were monitored. In hypotonic NaCl and KCl solutions potassium release and haemolysis increased with time showing that the cell membrane had been injured and became permeable to intra- and extracellular cations which, due to intracellular haemoglobin, causes water influx and continuous haemolysis. Both potassium release and haemolysis remained, however, at their 2-minute level in the presence of LPC. Thus, LPC could reseal the membrane and prevent continuous salt fluxes. It protected erythrocytes from hypotonic haemolysis and the protection was more efficient in NaCl than in sucrose media. This suggests that the increase in the critical volume of erythrocytes caused by LPC occurs both in electrolyte and sucrose media, and the additional protection observed in electrolyte media is due to the resealing of the injured cell membrane by LPC. The repairing mechanism was mediated via the membrane lipids or integral proteins, since the time-course of haemolysis of erythrocytes swollen in NaCl media at the spectrin-denaturing temperature of 49.5 degrees C was similar to that at room temperature with and without LPC. LPC did not protect erythrocytes from colloid osmotic haemolysis caused by ammonia influx in an isotonic NH4Cl medium, but protected the cells from colloid osmotic haemolysis caused by sodium influx through nystatin-channels in NaCl media without any area or volume increase. Hence, LPC could not prevent ammonia influx through the lipid bilayer, but suppressed sodium influx through nystatin-channels presumably via LPC interference with cholesterol.  相似文献   

20.
Growth pulsations (GP) in hydroid polyps are associated with changes in vacuolar patterns which can be imitated by altering external osmolarity. With the use of X-ray spectroscopy we measured the elemental contents in the vacuoles and cytoplasm of the growing tips of a hydroid polyp, Podocoryne carnea, under various tonicity conditions. Under hypertonic condition which arrested the samples at the retraction phase of normal GP, the elemental content within the vacuolar compartment appeared to be similar to that of the external medium, confirming our previous conclusion about the dehermetization of the vacuolar compartment under these conditions. Under hypotonical condition which arrested samples at the extension GP phase (vacuoles isolated) element ratio data displayed an obvious bimodality. At least one of the data groups could be characterized by a significant increase in the concentrations of sodium and potassium, as related to Cl, Ca and Mg, and in comparison to the same ratios in hypotonical samples and those in the external medium. We suggest that under hypotonical conditions the isolated vacuolar compartment is formed by influx of sodium and potassium ions. These cations are accompanied by anions other than chloride. Potassium appears to be transferred into the vacuoles from the cytoplasm while the sodium derives from the external environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号