首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe here a pathway for the import of proteins into the intermembrane space (IMS) of mitochondria. Substrates of this pathway are proteins with conserved cysteine motifs, which are critical for import. After passage through the TOM channel, these proteins are covalently trapped by Mia40 via disulfide bridges. Mia40 contains cysteine residues, which are oxidized by the sulfhydryl oxidase Erv1. Depletion of Erv1 or conditions reducing Mia40 prevent protein import. We propose that Erv1 and Mia40 function as a disulfide relay system that catalyzes the import of proteins into the IMS by an oxidative folding mechanism. The existence of a disulfide exchange system in the IMS is unexpected in view of the free exchange of metabolites between IMS and cytosol via porin channels. We suggest that this process reflects the evolutionary origin of the IMS from the periplasmic space of the prokaryotic ancestors of mitochondria.  相似文献   

2.
Mitochondria biogenesis requires the import of several precursor proteins that are synthesized in the cytosol. The mitochondrial heat shock protein 70 (mtHsp70) machinery components are highly conserved among eukaryotes, including humans. However, the functional properties of human mtHsp70 machinery components have not been characterized among all eukaryotic families. To study the functional interactions, we have reconstituted the components of the mtHsp70 chaperone machine (Hsp70/J-protein/GrpE/Hep) and systematically analyzed in vitro conditions for biochemical functions. We observed that the sequence-specific interaction of human mtHsp70 toward mitochondrial client proteins differs significantly from its yeast counterpart Ssc1. Interestingly, the helical lid of human mtHsp70 was found dispensable to the binding of P5 peptide as compared with the other Hsp70s. We observed that the two human mitochondrial matrix J-protein splice variants differentially regulate the mtHsp70 chaperone cycle. Strikingly, our results demonstrated that human Hsp70 escort protein (Hep) possesses a unique ability to stimulate the ATPase activity of mtHsp70 as well as to prevent the aggregation of unfolded client proteins similar to J-proteins. We observed that Hep binds with the C terminus of mtHsp70 in a full-length context and this interaction is distinctly different from unfolded client-specific or J-protein binding. In addition, we found that the interaction of Hep at the C terminus of mtHsp70 is regulated by the helical lid region. However, the interaction of Hep at the ATPase domain of the human mtHsp70 is mutually exclusive with J-proteins, thus promoting a similar conformational change that leads to ATPase stimulation. Additionally, we highlight the biochemical defects of the mtHsp70 mutant (G489E) associated with a myelodysplastic syndrome.  相似文献   

3.

Background

Mitochondrial biogenesis is an essential process in all eukaryotes. Import of proteins from the cytosol into mitochondria is a key step in organelle biogenesis. Recent evidence suggests that a given mitochondrial protein does not take the same import route in all organisms, suggesting that pathways of mitochondrial protein import can be rewired through evolution. Examples of this process so far involve proteins destined to the mitochondrial intermembrane space (IMS).

Scope of review

Here we review the components, substrates and energy sources of the known mechanisms of protein import into the IMS. We discuss evolutionary rewiring of the IMS import routes, focusing on the example of the lactate utilisation enzyme cytochrome b2 (Cyb2) in the model yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans.

Major conclusions

There are multiple import pathways used for protein entry into the IMS and they form a network capable of importing a diverse range of substrates. These pathways have been rewired, possibly in response to environmental pressures, such as those found in the niches in the human body inhabited by C. albicans.

General significance

We propose that evolutionary rewiring of mitochondrial import pathways can adjust the metabolic fitness of a given species to their environmental niche. This article is part of a Special Issue entitled Frontiers of Mitochondrial.  相似文献   

4.
5.
Coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) is a mitochondrial inner membrane (IM) protein facing toward the intermembrane space (IMS). In the IMS, ChChd3 complexes with multiple proteins at the crista junctions and contact sites and plays a key role in maintaining crista integrity. ChChd3 is myristoylated at the N terminus and has a CHCH domain with twin CX9C motifs at its C terminus. The CHCH domain proteins are traditionally imported and trapped in the IMS by using a disulfide relay system mediated by Mia40 and Erv1. In this study, we systematically analyzed the role of the myristoylation and the CHCH domain in the import and mitochondrial localization of ChChd3. Based on our results, we predict that myristoylation promotes binding of ChChd3 to the outer membrane and that the CHCH domain translocates the protein across the outer membrane. By analysis of the CHCH domain cysteine mutants, we further show that they have distinct roles in binding to Mia40 in the IMS and proper folding of the protein. The transient disulfide-bonded intermediate with Mia40 is formed preferentially between the second cysteine in helix 1, Cys193, and the active site cysteine in Mia40, Cys55. Although each of the four cysteines is essential for folding of the protein and binding to mitofilin and Sam50, they are not involved in import. Together our results indicate that both the myristoylation and the CHCH domain are essential for the import and mitochondrial localization of ChChd3. Once imported, ChChd3 binds to Mia40 for further folding and assembly into macromolecular complexes.  相似文献   

6.
5 S rRNA is an essential component of ribosomes. In eukaryotic cells, it is distinguished by particularly complex intracellular traffic, including nuclear export and re-import. The finding that in mammalian cells 5 S rRNA can eventually escape its usual circuit toward nascent ribosomes to get imported into mitochondria has made the scheme more complex, and it has raised questions about both the mechanism of 5 S rRNA mitochondrial targeting and its function inside the organelle. Previously, we showed that import of 5 S rRNA into mitochondria requires unknown cytosolic proteins. Here, one of them was identified as mitochondrial thiosulfate sulfurtransferase, rhodanese. Rhodanese in its misfolded form was found to possess a strong and specific 5 S rRNA binding activity, exploiting sites found earlier to function as signals of 5 S rRNA mitochondrial localization. The interaction with 5 S rRNA occurs cotranslationally and results in formation of a stable complex in which rhodanese is preserved in a compact enzymatically inactive conformation. Human 5 S rRNA in a branched Mg2+-free form, upon its interaction with misfolded rhodanese, demonstrates characteristic functional traits of Hsp40 cochaperones implicated in mitochondrial precursor protein targeting, suggesting that it may use this mechanism to ensure its own mitochondrial localization. Finally, silencing of the rhodanese gene caused not only a proportional decrease of 5 S rRNA import but also a general inhibition of mitochondrial translation, indicating the functional importance of the imported 5 S rRNA inside the organelle.  相似文献   

7.
When thinking of the mitochondrial intermembrane space we envisage a small compartment that is bordered by the mitochondrial outer and inner membranes. Despite this somewhat simplified perception the intermembrane space has remained a central focus in mitochondrial biology. This compartment accommodates many proteinaceous factors that play critical roles in mitochondrial and cellular metabolism, including the regulation of programmed cell death and energy conversion. The mechanism by which intermembrane space proteins are transported into the organelle and folded remained largely unknown until recently. In pursuit of the answer to this question a novel machinery, the Mitochondrial Intermembrane Space Assembly machinery, exploiting a unique regulated thiol-disulfide exchange mechanism has been revealed. This exciting discovery has not only put in place novel concepts for the biogenesis of intermembrane space precursors but also raises important implications on the mechanisms involved in the generation and transfer of disulfide bonds.  相似文献   

8.
Protein disulfide isomerase (PDI) and its homologs are catalysts of the formation of disulfide bonds in secretory proteins, and they also serve as molecular chaperones. In the present study, we investigated the redox-mediated regulation of the structures and functions of human pancreas-specific PDI homolog (PDIp). We found that formation of an inter-subunit disulfide bond in the recombinant human PDIp can alter not only its structure, but also its functions. PDIp exists predominantly as monomer under reducing conditions, but the dimeric form is significantly increased following the removal of the reducing agent, due to the formation of an inter-subunit disulfide bond. The oxidized PDIp (with an inter-subunit disulfide bond) appears to expose more hydrophobic patches and is more sensitive to protease digestion compared to the reduced form. Along with these structural changes, the oxidized PDIp also exhibits an enhanced chaperone activity. The formation of the inter-subunit disulfide bond in PDIp is mainly contributed by its non-active cysteine residue (cysteine-4), which is only present in human and primate PDIp, but not in rodent PDIp. In addition, we observed that the formation of the inter-subunit disulfide bond in PDIp is redox-dependent and is favored under oxidizing conditions, and that PDIp can function as a chaperone to form stable complexes with various non-native cellular proteins, particularly under oxidizing conditions. In light of these observations, it is concluded that the structures and functions of human PDIp are redox-regulated through formation of an inter-subunit disulfide bond between two cysteine-4 residues.  相似文献   

9.
We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery.  相似文献   

10.
In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (−171.5 mV; 30 °C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.  相似文献   

11.
In eukaryotic cells the enzyme protein disulfide isomerase (PDI) is responsible for the formation and reshuffling of disulfide bonds in secretory proteins. The reaction carried out by PDI involves interaction with a highly complex mixture of polypeptide molecules that are in the process of folding. This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation of an intramolecular disulfide bond between fluorophore-containing and quencher-containing peptide segments results in a redox-dependent fluorescence signal. We find a model compound of this type to be a highly sensitive substrate for PDI both in oxidation and in reduction assays under steady state conditions. These aspects should make substrates of this type generally applicable for assaying PDI and other thiol-disulfide exchange enzymes.  相似文献   

12.
Protein-disulfide isomerase (PDI), with domains arranged as abb'xa'c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a', and the minimum redox-regulated cassette is located in b'xa'. The structure of the reduced bb'xa' reveals for the first time that domain a' packs tightly with both domain b' and linker x to form one compact structural module. Oxidation of domain a' releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI.  相似文献   

13.
The compartment between the outer and the inner membranes of mitochondria, the intermembrane space (IMS), harbours a variety of proteins that contain disulfide bonds. Many of these proteins possess a conserved twin Cx(3)C motif or twin Cx(9)C motif. Recently, a disulfide relay system in the IMS has been identified which consists of two essential components, the sulfhydryl oxidase Erv1 and the redox-regulated import receptor Mia40/Tim40. The disulfide relay system drives the import of these cysteine-rich proteins into the IMS of mitochondria by an oxidative folding mechanism. In order to enable Mia40 to perform the oxidation of substrate proteins, the sulfhydryl oxidase Erv1 mediates the oxidation of Mia40 in a disulfide transfer reaction. To recycle Erv1 into its oxidized form, electrons are transferred to cytochrome c connecting the disulfide relay system to the electron transport chain of mitochondria. Despite the lack of homology of the components, the disulfide relay system in the IMS resembles the oxidation system in the periplasm of bacteria presumably reflecting the evolutionary origin of the IMS from the bacterial periplasm.  相似文献   

14.
The disulfide relay system found in the intermembrane space (IMS) of mitochondria is an essential pathway for the import and oxidative folding of IMS proteins. Erv1, an essential member of this pathway, has been previously found to be ubiquitously present in mitochondria-containing eukaryotes. However, the other essential protein, Mia40, was found to be absent or not required in some organisms, raising questions about how the disulfide relay functions in these organisms. A recent study published in BMC Biology demonstrates for the first time that some Erv1 proteins can function in oxidative folding independently of a Mia40 protein, providing for the first time strong evidence that the IMS disulfide relay evolved in a stepwise manner.See research article: 10.1186/s12915-017-0445-8  相似文献   

15.
Mia40-catalyzed disulfide formation drives the import of many proteins into the mitochondria. Here we characterize the oxidative folding of Cox19, a twin CX9C Mia40 substrate. Cox19 oxidation is extremely slow, explaining the persistence of import-competent reduced species in the cytosol. Mia40 accelerates Cox19 folding through the specific recognition of the third Cys in the second helical CX9C motif and the subsequent oxidation of the inner disulfide bond. This renders a native-like intermediate that oxidizes in a slow uncatalyzed reaction into native Cox19. The same intermediate dominates the pathway in the absence of Mia40, and chemical induction of an α-helical structure by trifluoroethanol suffices to accelerate productive folding and mimic the Mia40 folding template mechanism. The Mia40 role is to funnel a rough folding landscape, skipping the accumulation of kinetic traps, providing a rationale for the promiscuity of Mia40.  相似文献   

16.
A mitochondrial carrier family (MCF) of transport proteins facilitates the transfer of charged small molecules across the inner mitochondrial membrane. The human genome has ∼50 genes corresponding to members of this family. All MCF proteins contain three repeats of a characteristic and conserved PX(D/E)XX(K/R) motif thought to be central to the mechanism of these transporters. The mammalian mitochondrial folate transporter (MFT) is one of a few MCF members, known as the P(I/L)W subfamily, that have evolved a tryptophan residue in place of the (D/E) in the second conserved motif; the function of this substitution (Trp-142) is unclear. Molecular dynamics simulations of the MFT in its explicit membrane environment identified this tryptophan, as well as several other residues lining the transport cavity, to be involved in a series of sequential interactions that coordinated the movement of the tetrahydrofolate substrate within the transport cavity. We probed the function of these residues by mutagenesis. The mutation of every residue identified by molecular dynamics to interact with tetrahydrofolate during simulated transit into the aqueous channel severely impaired folate transport. Mutation of the subfamily-defining tryptophan residue in the MFT to match the MCF consensus at this position (W142D) was incompatible with cell survival. These studies indicate that MFT Trp-142, as well as other residues lining the transporter interior, coordinate tetrahydrofolate descent and positioning of the substrate in the transporter basin. Overall, we identified residues in the walls and at the base of the transport cavity that are involved in substrate recognition by the MFT.  相似文献   

17.

Background

Throughout evolution, mutations in particular regions of some protein structures have resulted in extra covalent bonds that increase the overall robustness of the fold: disulfide bonds. The two strategically placed cysteines can also have a more direct role in protein function, either by assisting thiol or disulfide exchange, or through allosteric effects. In this work, we verified how the structural similarities between disulfides can reflect functional and evolutionary relationships between different proteins. We analyzed the conformational patterns of the disulfide bonds in a set of disulfide-rich proteins that included twelve SCOP superfamilies: thioredoxin-like and eleven superfamilies containing small disulfide-rich proteins (SDP).

Results

The twenty conformations considered in the present study were characterized by both structural and energetic parameters. The corresponding frequencies present diverse patterns for the different superfamilies. The least-strained conformations are more abundant for the SDP superfamilies, while the “catalytic” +/−RHook is dominant for the thioredoxin-like superfamily. The “allosteric” -RHSaple is moderately abundant for BBI, Crisp and Thioredoxin-like superfamilies and less frequent for the remaining superfamilies. Using a hierarchical clustering analysis we found that the twelve superfamilies were grouped in biologically significant clusters.

Conclusions

In this work, we carried out an extensive statistical analysis of the conformational motifs for the disulfide bonds present in a set of disulfide-rich proteins. We show that the conformational patterns observed in disulfide bonds are sufficient to group proteins that share both functional and structural patterns and can therefore be used as a criterion for protein classification.  相似文献   

18.
Thioredoxin-interacting protein (TXNIP) is an α-arrestin family member involved in redox sensing and metabolic control. Growing evidence links TXNIP to mitochondrial function, but the molecular nature of this relationship has remained poorly defined. Herein, we employed targeted metabolomics and comprehensive bioenergetic analyses to evaluate oxidative metabolism and respiratory kinetics in mouse models of total body (TKO) and skeletal muscle-specific (TXNIPSKM−/−) Txnip deficiency. Compared with littermate controls, both TKO and TXNIPSKM−/− mice had reduced exercise tolerance in association with muscle-specific impairments in substrate oxidation. Oxidative insufficiencies in TXNIP null muscles were not due to perturbations in mitochondrial mass, the electron transport chain, or emission of reactive oxygen species. Instead, metabolic profiling analyses led to the discovery that TXNIP deficiency causes marked deficits in enzymes required for catabolism of branched chain amino acids, ketones, and lactate, along with more modest reductions in enzymes of β-oxidation and the tricarboxylic acid cycle. The decrements in enzyme activity were accompanied by comparable deficits in protein abundance without changes in mRNA expression, implying dysregulation of protein synthesis or stability. Considering that TXNIP expression increases in response to starvation, diabetes, and exercise, these findings point to a novel role for TXNIP in coordinating mitochondrial fuel switching in response to nutrient availability.  相似文献   

19.
Mitochondrial inner membrane carrier proteins are imported into mitochondria from yeast, fungi and mammals by specific machinery, some components of which are distinct from those utilized by other proteins. Import of two different carriers into plant mitochondria showed that one contains a cleavable presequence which was processed during import, while the other imported in a valinomycin-sensitive manner without processing. Mild osmotic shock of mitochondria released intermembrane space (IMS) components and impaired carrier protein import. Adding back the released IMS proteins as a concentrate in the presence of micromolar ZnCl2 stimulated carrier import into IMS-depleted mitochondria, but did not stimulate import of a non-carrier control precursor protein, the alternative oxidase. Anion-exchange separation of IMS components before addition to IMS-depleted mitochondria revealed a correlation between several 9-10 kDa proteins and stimulation of carrier import. MS/MS sequencing of these proteins identified them as plant homologues of the yeast zinc-finger carrier import components Tim9 and Tim10. Stimulation of import was dependent on either Zn2+ or Cd2+ and inhibited by both N-ethylmalamide (NEM) and a divalent cation chelator, consistent with a functional requirement for a zinc finger protein. This represents direct functional evidence for a distinct carrier import pathway in plant mitochondria, and provides a tool for determining the potential function of other IMS proteins associated with protein import.  相似文献   

20.
Human Cox17 is the mitochondrial copper chaperone responsible for supplying copper ions, through the assistance of Sco1, Sco2, and Cox11, to cytochrome c oxidase, the terminal enzyme of the mitochondrial energy-transducing respiratory chain. It consists of a coiled coil-helix-coiled coil-helix domain stabilized by two disulfide bonds and binds one copper(I) ion through a Cys-Cys motif. Here, the structures and the backbone mobilities of two Cox17 mutated forms with only one interhelical disulfide bond have been analyzed. It appears that the inner disulfide bond (formed by Cys-36 and Cys-45) stabilizes interhelical hydrophobic interactions, providing a structure with essentially the same structural dynamic properties of the mature Cox17 state. On the contrary, the external disulfide bond (formed by Cys-26 and Cys-55) generates a conformationally flexible α-helical protein, indicating that it is not able to stabilize interhelical packing contacts, but is important for structurally organizing the copper-binding site region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号