首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colony counts, scanning electron microscopy, and light microscopy were used to assess the capacity of Candida albicans to colonize (naturally) and infect the alimentary tract of adult and neonatal (athymic [nu/nu] or heterozygous [+/nu] littermates) germfree BALB/c mice. When exposed to yeast-phase C. albicans, the alimentary tract of adult germfree mice (nu/nu or +/nu) is quickly (within 24 to 48 h) colonized with yeast cells. Neither morbidity nor mortality was evident in any mice that were colonized with a pure culture of C. albicans for 6 months. Yeast cells of C. albicans predominated on mucosal surfaces in the oral cavities and vaginas of adult athymic and heterozygous mice. In both genotypes, C. albicans hyphae were observed in keratinized tissue on the dorsal posterior tongue surface and in the cardial-atrium section of the stomach. Conversely, neonatal athymic or heterozygous mice, born to germfree or C. albicans-colonized mothers, do not become heavily colonized or infected with C. albicans until 11 to 15 days after birth. Although yeast cells adhered to some mucosal surfaces in vivo, neither widespread mucocutaneous candidiasis, i.e., invasion of mucosal surfaces with C. albicans hyphae, nor overwhelming systemic candidiasis was evident in neonatal (nu/nu or +/nu) mice. Thus, even in the absence of functional T-cells and a viable bacterial flora, athymic and heterozygous littermate mice (adult or neonatal BALB/c) that are colonized with a pure culture of C. albicans manifest resistance to extensive mucocutaneous and systemic candidiasis.  相似文献   

2.
Colony counts, scanning electron microscopy, and light microscopy were used to assess the capacity of Candida albicans to colonize (naturally) and infect the alimentary tract of adult and neonatal (athymic [nu/nu] or heterozygous [+/nu] littermates) germfree BALB/c mice. When exposed to yeast-phase C. albicans, the alimentary tract of adult germfree mice (nu/nu or +/nu) is quickly (within 24 to 48 h) colonized with yeast cells. Neither morbidity nor mortality was evident in any mice that were colonized with a pure culture of C. albicans for 6 months. Yeast cells of C. albicans predominated on mucosal surfaces in the oral cavities and vaginas of adult athymic and heterozygous mice. In both genotypes, C. albicans hyphae were observed in keratinized tissue on the dorsal posterior tongue surface and in the cardial-atrium section of the stomach. Conversely, neonatal athymic or heterozygous mice, born to germfree or C. albicans-colonized mothers, do not become heavily colonized or infected with C. albicans until 11 to 15 days after birth. Although yeast cells adhered to some mucosal surfaces in vivo, neither widespread mucocutaneous candidiasis, i.e., invasion of mucosal surfaces with C. albicans hyphae, nor overwhelming systemic candidiasis was evident in neonatal (nu/nu or +/nu) mice. Thus, even in the absence of functional T-cells and a viable bacterial flora, athymic and heterozygous littermate mice (adult or neonatal BALB/c) that are colonized with a pure culture of C. albicans manifest resistance to extensive mucocutaneous and systemic candidiasis.  相似文献   

3.
The pathogenic yeast Candida albicans, a member of the mucosal microbiota, is responsible for a large spectrum of infections, ranging from benign thrush and vulvovaginitis in both healthy and immunocompromised individuals to severe, life-threatening infections in immunocompromised patients. A striking feature of C. albicans is its ability to grow as budding yeast and as filamentous forms, including hyphae and pseudohyphae. The yeast-to-hypha transition contributes to the overall virulence of C. albicans and may even constitute a target for the development of antifungal drugs. Indeed, impairing morphogenesis in C. albicans has been shown to be a means to treat candidiasis. Additionally, a large number of small molecules such as farnesol, fatty acids, rapamycin, geldanamycin, histone deacetylase inhibitors, and cell cycle inhibitors have been reported to modulate the yeast-to-hypha transition in C. albicans. In this minireview, we take a look at molecules that modulate morphogenesis in this pathogenic yeast. When possible, we address experimental findings regarding their mechanisms of action and their therapeutic potential. We discuss whether or not modulating morphogenesis constitutes a strategy to treat Candida infections.  相似文献   

4.
5.
Candida albicans is the most common cause of fungal bloodstream infections. To invade the deep tissues, blood-borne organisms must cross the endothelial cell lining of the vasculature. We have found previously that C. albicans hyphae, but not blastospores, invade endothelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the endothelial cell receptor that mediates the endocytosis of C. albicans. We determined that endocytosis of C. albicans was not mediated by bridging molecules in the serum and that it was partially dependent on the presence of extracellular calcium. Using an affinity purification procedure, we discovered that endothelial cell N-cadherin bound to C. albicans hyphae but not blastospores. N-cadherin also co-localized with C. albicans hyphae that were being endocytosed by endothelial cells. Chinese hamster ovary (CHO) cells expressing human N-cadherin endocytosed significantly more C. albicans hyphae than did CHO cells expressing either human VE-cadherin or no human cadherins. The expression of N-cadherin by the CHO cells resulted in enhanced endocytosis of hyphae, but not blastospores, indicating the selectivity of the N-cadherin-mediated endocytosis. Down-regulation of endothelial cell N-cadherin expression with small interfering RNA significantly inhibited the endocytosis of C. albicans hyphae. Therefore, a novel function of N-cadherin is that it serves as an endothelial cell receptor, which mediates the endocytosis of C. albicans.  相似文献   

6.
Macrophages in resistance to candidiasis.   总被引:14,自引:1,他引:13       下载免费PDF全文
Candida albicans, an increasingly common opportunistic pathogenic fungus, frequently causes disease in immunodeficient but not immunocompetent hosts. Clarifying the role of the phagocytic cells that participate in resistance to candidiasis not only is basic to understanding how the host copes with this dimorphic pathogen but also will expedite the development of innovative prophylactic and therapeutic approaches for treating the multiple clinical presentations that candidiasis encompasses. In this review, we present evidence that a diverse population of mononuclear phagocytes, in different states of activation and differentiation and from a variety of host species, can phagocytize C. albicans blastoconidia via an array of opsonic and nonopsonic mechanisms and can kill C. albicans blastoconidia and hyphae by means of oxygen-dependent and -independent mechanisms. Reactive nitrogen intermediates should now be added to the well-established candidacidal reactive oxygen intermediates of macrophages. Furthermore, what were thought to be two independent pathways, i.e., nitric oxide and superoxide anion, have now been shown to combine to form a potent macrophage candidacidal molecule, peroxynitrite. In contrast to monocytes and neutrophils, which are important in resistance to early stages of C. albicans infections, more differentiated macrophages activated by cytokines such as gamma interferon participate in the acquired resistance of hosts with C. albicans-specific, cell-mediated immunity. Evidence presented in this review demonstrates that mononuclear phagocytes, in some instances in the absence of other professional phagocytes such as neutrophils, play an import role in resistance to systemic and mucosal candidiasis.  相似文献   

7.
8.
The purpose of this study is to compare the light and scanning electron microscopic (SEM) features of tissue invasion by three Candida species (C. albicans, C. tropicalis, and C. dubliniensis) in two different tissue culture models: rabbit tongue mucosal explants (RTME) and reconstituted human oral epithelium (RHOE). Tongue mucosal biopsies of healthy New Zealand rabbits were maintained in explant culture using a transwell system. RHOE was obtained from Skinethic Laboratory (Nice, France). RTME and RHOE were inoculated with C. albicans, C. tropicalis, and C. dubliniensis separately and incubated at 37 degrees C, 5% CO(2), and 100% humidity up to 48 h. Light microscopic and SEM examinations of uninfected (controls) and infected tissues were performed at 24 and 48 h. C. albicans produced characteristic hallmarks of pathological tissue invasion in both tissue models over a period of 48 h. Hyphae penetrated through epithelial cells and intercellular gaps latter resembling thigmotropism. SEM showed cavitations on the epithelial cell surfaces particularly pronounced at sites of hyphal invasion. Some hyphae on RTME showed several clusters of blastospores attached in regular arrangements resembling "appareil sporifere". C. tropicalis and C. dubliniensis produced few hyphae mainly on RTME but they did not penetrate either model. Our findings indicate that multiple host-fungal interactions such as cavitations, thigmotropism, and morphogenesis take place during candidal tissue invasion. RTME described here appears to be useful in investigations of such pathogenic processes of Candida active at the epithelial front.  相似文献   

9.
Candida albicans and C. dubliniensis are very closely related yeast species. In this study, we have conducted a thorough comparison of the ability of the two species to produce hyphae and their virulence in two infection models. Under all induction conditions tested C. albicans consistently produced hyphae more efficiently than C. dubliniensis. In the oral reconstituted human epithelial model, C. dubliniensis isolates grew exclusively in the yeast form, while the C. albicans strains produced abundant hyphae that invaded and caused significant damage to the epithelial tissue. In the oral-intragastric infant mouse infection model, C. dubliniensis strains were more rapidly cleared from the gastrointestinal tract than C. albicans. Immunosuppression of Candida-infected mice caused dissemination to internal organs by both species, but C. albicans was found to be far more effective at dissemination than C. dubliniensis. These data suggest that a major reason for the comparatively low virulence of C. dubliniensis is its lower capacity to produce hyphae.  相似文献   

10.
Candida albicans , the major human fungal pathogen, undergoes a reversible morphological transition from single yeast cells to pseudohyphae and hyphae filaments. The hyphae form is considered the most invasive form of the fungus. The purpose of this study is to investigate the effect of saliva on hyphae growth of C. albicans. Candida albicans hyphae were inoculated in Roswell Park Memorial Institute medium with whole saliva, parotid saliva or buffer mimicking the saliva ion composition, and cultured for 18 h at 37 °C under aerobic conditions with 5% CO2. Whole saliva and parotid saliva induced transition to yeast growth, whereas the culture with buffer remained in the hyphae form. Parotid saliva was fractionated on a reverse-phase C8 column and each fraction was tested for inducing transition to yeast growth. By immunoblotting, the salivary component in the active fraction was identified as statherin, a phosphoprotein of 43 amino acids that has been implicated in remineralization of the teeth. Synthetically made statherin induced transition of hyphae to yeast. By deletion of five amino acids at the negatively charged N-terminal site (DpSpSEE), yeast-inducing activity and binding to C. albicans were increased. In conclusion, statherin induces transition to yeast of C. albicans hyphae and may thus contribute to the oral defense against candidiasis.  相似文献   

11.
白念珠菌是人体重要的条件性致病真菌。形态的多样性和可塑性是白念珠菌典型的生物学特征,这与它的致病性、宿主适应能力以及有性生殖过程密切相关。白念珠菌生物被膜(Biofilm)是由不同形态细胞(包括酵母型、菌丝和假菌丝)以及胞外基质组成的致密结构,也是毒性和耐药性形成的重要因子。生物被膜对抗真菌药物、宿主免疫系统和环境胁迫因子等都表现出较强的抵抗力和耐受性,是临床上病原真菌感染防治的重大挑战。随着基因表达谱和遗传操作技术的发展,白念珠菌生物被膜的形成及其耐药性的获得所依赖的遗传调控通路和分子调控机制越来越清楚。主要包括MAPK和cAMP介导的信号途径以及Bcr1和Tec1等因子介导的转录调控。此外,白念珠菌生物被膜的形成与形态转换和有性生殖之间存在密切的联系。文中综述了白念珠菌生物被膜形成的遗传调控机制,重点介绍了细胞壁相关蛋白、转录因子和交配型对该过程的调控以及生物被膜的耐药机制。  相似文献   

12.
13.
白念珠菌菌丝发育的遗传调控   总被引:1,自引:0,他引:1  
白念珠菌(Candidaalbicans)是人体内最重要的机会型致病真菌,能以酵母、假菌丝、菌丝等多种形态存在。白念珠菌的菌丝发育与它的致病性成正相关,这一过程由胞内多种信号转导途径所调控。现对控制白念珠菌菌丝发育的主要信号转导途径进行综述。  相似文献   

14.
BACKGOUND: The balance between human innate immune system and Candida albicans virulence signaling mechanisms ultimately dictates the outcome of fungal invasiveness and its pathology. To better understand the pathophysiology and to identify fungal virulence-associated factors in the context of persistence in humans, complex models are indispensable. Although fungal virulence factors have been extensively studied in vitro and in vivo using different immune cell subsets and cell lines, it is unclear how C. albicans survives inside complex tissue granulomas. METHODOLOGY/PRINCIPAL FINDING: We developed an original model of in vitro human granuloma, reproducing the natural granulomatous response to C. albicans. Persistent granulomas were obtained when the ratio of phagocytes to fungi was high. This in vitro fungal granuloma mimics natural granulomas, with infected macrophages surrounded by helper and cytotoxic T lymphocytes. A small proportion of granulomas exhibited C. albicans hyphae. Histological and time-lapse analysis showed that C. albicans blastoconidia were located within the granulomas before hyphae formation. Using staining techniques, fungal load calculations, as well as confocal and scanning electron microscopy, we describe the kinetics of fungal granuloma formation. We provide the first direct evidence that C. albicans are not eliminated by immunocompetent cells inside in vitro human granulomas. In fact, after an initial candicidal period, the remaining yeast proliferate and persist under very complex immune responses. CONCLUSIONS/SIGNIFICANCE: Using an original in vitro model of human fungal granuloma, we herein present the evidence that C. albicans persist and grow into immunocompetent granulomatous structures. These results will guide us towards a better understanding of fungal invasiveness and, henceforth, will also help in the development of better strategies for its control in human physiological conditions.  相似文献   

15.
Hyphae of the dimorphic fungus, Candida albicans , exhibit directional tip responses when grown in contact with surfaces. On hard surfaces or in liquid media, the trajectory of hyphal growth is typically linear, with tip re-orientation events limited to encounters with topographical features (thigmotropism). In contrast, when grown on semisolid surfaces, the tips of C. albicans hyphae grow in an oscillatory manner to form regular two-dimensional sinusoidal curves and three-dimensional helices. We show that, like thigmotropism, initiation of directional tip oscillation in C. albicans hyphae is severely attenuated when Ca2+ homeostasis is perturbed. Chelation of extracellular Ca2+ or deletion of the Ca2+ transporters that modulate cytosolic [Ca2+] (Mid1, Cch1 or Pmr1) did not affect hyphal length but curve formation was severely reduced in mid1 Δ and cch1 Δ and abolished in pmr1 Δ. Sinusoidal hypha morphology was altered in the mid1 Δ, chs3 Δ and heterozygous pmr1 Δ/ PMR1 strains. Treatments that affect cell wall integrity, changes in surface mannosylation or the provision of additional carbon sources had significant but less pronounced effects on oscillatory growth. The induction of two- and three-dimensional sinusoidal growth in wild-type C. albicans hyphae is therefore the consequence of mechanisms that involve Ca2+ influx and signalling rather than gross changes in the cell wall architecture.  相似文献   

16.
Dendritic cells (DC) function as professional phagocytes to kill Candida albicans and subsequently present it to the adaptive immune system. Monocytes, macrophages and DC were generated from five individual donors and their Candida-killing capacity and cytokine release were assessed. Compared to monocytes and macrophages, DC from healthy volunteers were significantly less effective in C. albicans--stimulated cytokine release, killing of C. albicans blastoconidia and damaging of C. albicans hyphae. In conclusion, while important as antigen-presenting cells and initiators of the adaptive immune system, DC are poor in both intracellular killing and damaging of C. albicans hyphae. Effective handling of large numbers of C. albicans is the prime task of the innate immune system consisting of large numbers of neutrophils and monocytes.  相似文献   

17.
18.
The fungus C. albicans uses adhesins to interact with human epithelial surfaces in the processes of colonization and pathogenesis. The C. albicans ALS (agglutinin-like sequence) gene family encodes eight large cell-surface glycoproteins (Als1-Als7 and Als9) that have adhesive function. This study utilized C. albicans Δals mutant strains to investigate the role of the Als family in oral epithelial cell adhesion and damage, cytokine induction and activation of a MAPK-based (MKP1/c-Fos) signaling pathway that discriminates between yeast and hyphae. Of the eight Δals mutants tested, only the Δals3 strain showed significant reductions in oral epithelial cell adhesion and damage, and cytokine production. High fungal:epithelial cell multiplicities of infection were able to rescue the cell damage and cytokine production phenotypes, demonstrating the importance of fungal burden in mucosal infections. Despite its adhesion, damage and cytokine induction phenotypes, the Δals3 strain induced MKP1 phosphorylation and c-Fos production to a similar extent as control cells. Our data demonstrate that Als3 is involved directly in epithelial adhesion but indirectly in cell damage and cytokine induction, and is not the factor targeted by oral epithelial cells to discriminate between the yeast and hyphal form of C. albicans.  相似文献   

19.
Hyphal growth is prevalent during most Candida albicans infections. Current cell division models, which are based on cytological analyses of C. albicans, predict that hyphal branching is intimately linked with vacuolar inheritance in this fungus. Here we report the molecular validation of this model, showing that a specific mutation that disrupts vacuolar inheritance also affects hyphal division. The armadillo repeat-containing protein Vac8p plays an important role in vacuolar inheritance in Saccharomyces cerevisiae. The VAC8 gene was identified in the C. albicans genome sequence and was resequenced. Homozygous C. albicans vac8Delta deletion mutants were generated, and their phenotypes were examined. Mutant vac8Delta cells contained fragmented vacuoles, and minimal vacuolar material was inherited by daughter cells in hyphal or budding forms. Normal rates of growth and hyphal extension were observed for the mutant hyphae on solid serum-containing medium. However, branching frequencies were significantly increased in the mutant hyphae. These observations are consistent with a causal relationship between vacuolar inheritance and the cell division cycle in the subapical compartments of C. albicans hyphae. The data support the hypothesis that cytoplasmic volume, rather than cell size, is critical for progression through G1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号