首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
This study examined some of the physiological and performance effects of three different tapers in highly trained athletes. After 8 wk of training, nine male middle-distance runners were randomly assigned to one of three different 7-day tapers: a high-intensity low-volume taper (HIT), a low-intensity moderate-volume taper (LIT), or a rest-only taper (ROT). After the first taper, subjects resumed training for 4 wk and performed a second taper and then resumed training for 4 wk and completed the remaining taper, so that each subject underwent all three tapers. Performance was measured before and after each taper by a treadmill run to fatigue at a velocity equivalent each subject's best 1,500-m time. Voluntary isometric strength and evoked contractile properties of the quadriceps were measured before and after each taper, as were muscle glycogen concentration and citrate synthase activity (from needle biopsies) and total blood and red cell volume by 125I and 51Cr tagging. Maximal O2 consumption was unaffected by all three tapers, but running time to fatigue increased significantly after HIT (+22%). It was unaffected by LIT (+6%) and ROT (-3%) procedure. Citrate synthase activity increased significantly with HIT and decreased significantly with ROT. Muscle glycogen concentration increased significantly after ROT and HIT, and strength increased after all three tapers. Total blood volume increased significantly after HIT and decreased after ROT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Fifteen highly trained distance runners VO(2)max 71.1 +/- 6.0 ml.min(-1).kg(-1), mean +/- SD) were randomly assigned to a plyometric training (PLY; n = 7) or control (CON; n = 8) group. In addition to their normal training, the PLY group undertook 3 x 30 minutes PLY sessions per week for 9 weeks. Running economy (RE) was assessed during 3 x 4 minute treadmill runs (14, 16, and 18 km.h(-1)), followed by an incremental test to measure VO(2)max. Muscle power characteristics were assessed on a portable, unidirectional ground reaction force plate. Compared with CON, PLY improved RE at 18 km.h(-1) (4.1%, p = 0.02), but not at 14 or 16 km.h(-1). This was accompanied by trends for increased average power during a 5-jump plyometric test (15%, p = 0.11), a shorter time to reach maximal dynamic strength during a strength quality assessment test (14%, p = 0.09), and a lower VO(2)-speed slope (14%, p = 0.12) after 9 weeks of PLY. There were no significant differences in cardiorespiratory measures or VO(2)max as a result of PLY. In a group of highly-trained distance runners, 9 weeks of PLY improved RE, with likely mechanisms residing in the muscle, or alternatively by improving running mechanics.  相似文献   

4.
We examined the hemodynamic factors associated with the lower maximal O2 consumption (VO2max) in older formerly elite distance runners. Heart rate and VO2 were measured during submaximal and maximal treadmill exercise in 11 master [66 +/- 8 (SD) yr] and 11 young (32 +/- 5 yr) male runners. Cardiac output was determined using acetylene rebreathing at 30, 50, 70, and 85% VO2max. Maximal cardiac output was estimated using submaximal stroke volume and maximal heart rate. VO2max was 36% lower in master runners (45.0 +/- 6.9 vs. 70.4 +/- 8.0 ml.kg-1.min-1, P less than or equal to 0.05), because of both a lower maximal cardiac output (18.2 +/- 3.5 vs. 25.4 +/- 1.7 l.min-1) and arteriovenous O2 difference (16.6 +/- 1.6 vs. 18.7 +/- 1.4 ml O2.100 ml blood-1, P less than or equal to 0.05). Reduced maximal heart rate (154.4 +/- 17.4 vs. 185 +/- 5.8 beats.min-1) and stroke volume (117.1 +/- 16.1 vs. 137.2 +/- 8.7 ml.beat-1) contributed to the lower cardiac output in the older athletes (P less than or equal 0.05). These data indicate that VO2max is lower in master runners because of a diminished capacity to deliver and extract O2 during exercise.  相似文献   

5.
This study was designed to test the hypothesis that intermittent normobaric hypoxia at rest is a sufficient stimulus to elicit changes in physiological measures associated with improved performance in highly trained distance runners. Fourteen national-class distance runners completed a 4-wk regimen (5:5-min hypoxia-to-normoxia ratio for 70 min, 5 times/wk) of intermittent normobaric hypoxia (Hyp) or placebo control (Norm) at rest. The experimental group was exposed to a graded decline in fraction of inspired O2: 0.12 (week 1), 0.11 (week 2), and 0.10 (weeks 3 and 4). The placebo control group was exposed to the same temporal regimen but breathed fraction of inspired O2 of 0.209 for the entire 4 wk. Subjects were matched for training history, gender, and baseline measures of maximal O2 uptake and 3,000-m time-trial performance in a randomized, balanced, double-blind design. These parameters, along with submaximal treadmill performance (economy, heart rate, lactate, and ventilation), were measured in duplicate before, as well as 1 and 3 wk after, the intervention. Hematologic indexes, including serum concentrations of erythropoietin and soluble transferrin receptor and reticulocyte parameters (flow cytometry), were measured twice before the intervention, on days 1, 5, 10, and 19 of the intervention, and 10 and 25 days after the intervention. There were no significant differences in maximal O2 uptake, 3,000-m time-trial performance, erythropoietin, soluble transferrin receptor, or reticulocyte parameters between groups at any time. Four weeks of a 5:5-min normobaric hypoxia exposure at rest for 70 min, 5 days/wk, is not a sufficient stimulus to elicit improved performance or change the normal level of erythropoiesis in highly trained runners.  相似文献   

6.
Factors improving exercise capacity in highly trained individuals are of major interest. Recent studies suggest that the dietary intake of inorganic nitrate may enhance athletic performance. This has been related to the stepwise in vivo bioactivation of nitrate to nitrite and nitric oxide (NO) with the modulation of mitochondrial function. Here we show that higher baseline levels of nitrite are associated with a superior exercise capacity in highly trained athletes independent of endothelial function. Eleven male athletes were enrolled in this investigation and each participant reported twice to the testing facility (total of n=22 observations). Venous blood was obtained to determine the levels of circulating plasma nitrite and nitrate. Endothelial function was assessed by measuring flow-mediated vasodilation (FMD). Hereafter, participants completed a stepwise bicycle exercise test until exhaustion. Blood was drawn from the ear lope to determine the levels of lactate. Lactate anaerobic thresholds (LAT) in relation to heart rate were calculated using non-linear regression models. Baseline plasma nitrite levels correlated with LATs (r=0.65; p=0.001, n=22) and with endothelial function as assessed by FMD (r=0.71; p=0.0002). Correlation coefficients from both testing days did not differ. Multiple linear regressions showed that baseline plasma nitrite level but not endothelial function was an independent predictor of exercise capacity. No such correlations were determined for plasma nitrate levels.  相似文献   

7.
To determine whether creatine monohydrate supplementation would improve performance during a submaximal treadmill run interspersed with high-intensity intervals, 15 college soccer players (8 women, 7 men) received either creatine or a maltodextrin placebo at 0.3 g.kg body mass per day for 6 days. The speed of the treadmill was constant at 160.8 m.min, and every 2 minutes the grade was elevated to 15%. Each hill segment was 1 minute long. At the end of the 20-minute protocol, the treadmill was again elevated to 15% and held there until volitional exhaustion occurred. There was a significant treatment effect of creatine supplementation on body mass (p < 0.05) in the men; however, no significant differences were observed in the women (p > 0.05). There were no treatment effects (p > 0.05) on time to exhaustion, ratings of perceived exertion, or blood lactate concentration. There was a tendency for blood lactate levels to be lower after short-term creatine supplementation in the women, but this was not statistically significant. Based on these results, it appears that creatine supplementation does not improve performance in submaximal running interspersed with high-intensity intervals.  相似文献   

8.
The current perception among highly competitive endurance runners is that concurrent resistance and endurance training (CT) will improve running performance despite the limited research in this area. The purpose of this review was to search the body of scientific literature for original research addressing the effects of CT on distance running performance in highly competitive endurance runners. Specific key words (including running, strength training, performance, and endurance) were used to search relevant databases through April 2007 for literature related to CT. Original research was reviewed using the Physiotherapy Evidence Database (PEDro) scale. Five studies met inclusion criteria: highly trained runners (>or= 30 mile x wk(-1) or >or= 5 d x wk(-1)), CT intervention for a period >or= 6 weeks, performance distance between 3K and 42.2K, and a PEDro scale score >or= 5 (out of 10). Exclusion criteria were prepubertal children and elderly populations. Four of the five studies employed sport-specific, explosive resistance training, whereas one study used traditional heavy weight resistance training. Two of the five studies measured 2.9% improved performance (3K and 5K), and all five studies measured 4.6% improved running economy (RE; range = 3-8.1%). After critically reviewing the literature for the impact of CT on high-level runners, we conclude that resistance training likely has a positive effect on endurance running performance or RE. The short duration and wide range of exercises implemented are of concern, but coaches should not hesitate to implement a well-planned, periodized CT program for their endurance runners.  相似文献   

9.
A large number of team sports require athletes to repeatedly produce maximal or near maximal sprint efforts of short duration interspersed with longer recovery periods of submaximal intensity. This type of team sport activity can be characterized as prolonged, high-intensity, intermittent running (PHIIR). The primary purpose of the present study was to determine the physiological factors that best relate to a generic PHIIR simulation that reflects team sport running activity. The second purpose of this study was to determine the relationship between common performance tests and the generic PHIIR simulation. Following a familiarization session, 16 moderately trained (VO2max = 40.0 +/- 4.3 ml x kg(-1) x min(-1)) women team sport athletes performed various physiological, anthropometrical, and performance tests and a 30-minute PHIIR sport simulation on a nonmotorized treadmill. The mean heart rate and blood lactate concentration during the PHIIR sport simulation were 164 +/- 6 b x min(-1) and 8.2 +/- 3.3 mmol x L(-1), respectively. Linear regression demonstrated significant relationships between the PHIIR sport simulation distance and running velocity attained at a blood lactate concentration of 4 mmol x L(-1) (LT) (r = 0.77, p < 0.05), 5 x 6-second repeated cycle sprint work (r = 0.56, p < 0.05), 30-second Wingate test (r = 0.61, p < 0.05), peak aerobic running velocity (Vmax) (r = 0.69, p < 0.05), and Yo-Yo Intermittent Recovery Test (Yo-Yo IR1) distance (r = 0.50, p < 0.05), respectively. These results indicate that an increased LT is associated with improved PHIIR performance and that PHIIR performance may be monitored by determining Yo-Yo IR1 performance, 5 x 6-second repeated sprint cycle test work, 30-second Wingate test performance, Vmax, or LT. We suggest that training programs should focus on improving both LT and Vmax for increasing PHIIR performance in moderately trained women. Future studies should examine optimal training methods for improving these capacities in team sport athletes.  相似文献   

10.
This study tested the effects of inhaled nitric oxide [NO; 20 parts per million (ppm)] during normoxic and hypoxic (fraction of inspired O(2) = 14%) exercise on gas exchange in athletes with exercise-induced hypoxemia. Trained male cyclists (n = 7) performed two cycle tests to exhaustion to determine maximal O(2) consumption (VO(2 max)) and arterial oxyhemoglobin saturation (Sa(O(2)), Ohmeda Biox ear oximeter) under normoxic (VO(2 max) = 4.88 +/- 0.43 l/min and Sa(O(2)) = 90.2 +/- 0.9, means +/- SD) and hypoxic (VO(2 max) = 4.24 +/- 0.49 l/min and Sa(O(2)) = 75.5 +/- 4.5) conditions. On a third occasion, subjects performed four 5-min cycle tests, each separated by 1 h at their respective VO(2 max), under randomly assigned conditions: normoxia (N), normoxia + NO (N/NO), hypoxia (H), and hypoxia + NO (H/NO). Gas exchange, heart rate, and metabolic parameters were determined during each condition. Arterial blood was drawn at rest and at each minute of the 5-min test. Arterial PO(2) (Pa(O(2))), arterial PCO(2), and Sa(O(2)) were determined, and the alveolar-arterial difference for PO(2) (A-aDO(2)) was calculated. Measurements of Pa(O(2)) and Sa(O(2)) were significantly lower and A-aDO(2) was widened during exercise compared with rest for all conditions (P < 0.05). No significant differences were detected between N and N/NO or between H and H/NO for Pa(O(2)), Sa(O(2)) and A-aDO(2) (P > 0.05). We conclude that inhalation of 20 ppm NO during normoxic and hypoxic exercise has no effect on gas exchange in highly trained cyclists.  相似文献   

11.
Serum zinc was measured in 20 adolescent gymnasts (9 boys, 11 girls, age 12–15 yr) explored for detecting possible adverse effects of intense training on pubertal maturation and growth. They had low serum zinc (0.599±0.026 mg/L) when compared to matched control sedentary children (n=118 mean 0.81±0.014p<0.001). Girls had lower zinc than boys (0.557±0.023 vs 0.651±0.044p<0.001). Zinc was correlated to isometric adductor strength (r=0.468p<0.05). Children with serum zinc <0.6 mg/L had lower insulin-like growth factor binding protein 3 than others (2.326±0.264 vs 2.699±0.12p<0.01). Thus, zinc is lowered in trained adolescent gymnasts and even lower in females. This reduction could play some role in abnormalities of puberty, growth, or muscular performance.  相似文献   

12.
The purpose of this study was to determine the effects of high-intensity treadmill exercise training on 1) the regional distribution of muscle blood flow within and among muscles in rats during high-intensity treadmill exercise (phase I) and 2) on the total and regional hindlimb skeletal muscle blood flow capacities as measured in isolated perfused rat hindquarters during maximal papaverine vasodilation (phase II). Two groups of male Sprague-Dawley rats were trained 5 days/wk for 6 wk with a program consisting of 6 bouts/day of 2.5-min runs at 60 m/min up a 15% grade with 4.5-min rest periods between bouts. After training, blood flows were measured with the radiolabeled microsphere technique (phase I) in pair-weighted sedentary control and exercise-trained rats while they ran at 60 m/min (0% grade). In phase II of the study, regional vascular flow capacities were determined at three perfusion pressures (30, 40, and 50 mmHg) in isolated perfused hindquarters of control and trained rats maximally vasodilated with papaverine. The results indicate that this exercise training program produces increases in the vascular flow capacity of fast-twitch glycolytic muscle tissue of rats. However, these changes were not apparent in the magnitude or distribution of muscle blood flow in conscious rats running at 60 m/min, since blood flows within and among muscles during exercise were the same in trained and control rats.  相似文献   

13.
14.
15.
The purpose of this study was to determine the effects of exercise intensity on lipid and lipoprotein metabolism. Concentrations of triglyceride, cholesterol, high-density lipoprotein cholesterol (HDL-C) and its subfractions (HDL2-C and HDL3-C), low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, and apolipoproteins A-I, A-II, and B were measured. Ten well-trained runners completed treadmill exercise on two different occasions: a high-intensity session at 75% maximal oxygen consumption lasting 60 min and a low-intensity session at 50% maximal oxygen consumption lasting 90 min. Energy expenditure for each session was equal. Fasted blood samples were obtained 24 h before, immediately before, immediately after, and 1, 24, 48, and 72 h after each exercise session. No significant differences were found for the blood variables across time or between treatments. However, HDL-C and HDL2-C were slightly elevated on the days after each treatment. These results suggest that acute exercise sessions lasting less than 90 min, regardless of intensity, do not elicit plasma lipid, lipoprotein, and apolipoprotein changes in men who are habitually physically active and have high initial concentrations of HDL-C.  相似文献   

16.
The causes of exercise-induced hypoxemia (EIH) remain unclear. We studied the mechanisms of EIH in highly trained cyclists. Five subjects had no significant change from resting arterial PO(2) (Pa(O(2)); 92.1 +/- 2.6 Torr) during maximal exercise (C), and seven subjects (E) had a >10-Torr reduction in Pa(O(2)) (81.7 +/- 4.5 Torr). Later, they were studied at rest and during various exercise intensities by using the multiple inert gas elimination technique in normoxia and hypoxia (13.2% O(2)). During normoxia at 90% peak O(2) consumption, Pa(O(2)) was lower in E compared with C (87 +/- 4 vs. 97 +/- 6 Torr, P < 0.001) and alveolar-to-arterial O(2) tension difference (A-aDO(2)) was greater (33 +/- 4 vs. 23 +/- 1 Torr, P < 0. 001). Diffusion limitation accounted for 23 (E) and 13 Torr (C) of the A-aDO(2) (P < 0.01). There were no significant differences between groups in arterial PCO(2) (Pa(CO(2))) or ventilation-perfusion (VA/Q) inequality as measured by the log SD of the perfusion distribution (logSD(Q)). Stepwise multiple linear regression revealed that lung O(2) diffusing capacity (DL(O(2))), logSD(Q), and Pa(CO(2)) each accounted for approximately 30% of the variance in Pa(O(2)) (r = 0.95, P < 0.001). These data suggest that EIH has a multifactorial etiology related to DL(O(2)), VA/Q inequality, and ventilation.  相似文献   

17.
The purpose of this study was to examine the effects of dynamic stretching on running energy cost and endurance performance in trained male runners. Fourteen male runners performed both a 30-minute preload run at 65% VO2max and a 30-minute time trial to assess running energy cost and performance, respectively. The subjects repeated both the trials after either 15 minutes of dynamic stretching (i.e., experimental condition) or quiet sitting (i.e., control condition) while the order was balanced between the subjects to avoid any order effect. The total calories expended were determined for the 30-minute preload run, whereas the distance covered was measured in the time trial. Average resting VO2 increased significantly (p < 0.05) after dynamic stretching (prestretch: 6.2 ± 1.7 vs. poststretch: 8.4 ± 2.1 ml·kg(-1)·min(-1)) but not during the quiet-sitting condition. Caloric expenditure was significantly higher during the 30-minute preload run for the stretching (416.3 ± 44.9 kcal) compared with that during the quiet sitting (399.3 ± 50.4 kcal) (p < 0.05). There was no difference in the distance covered after quiet sitting (6.3 ± 1.1 km) compared with that for the stretching condition (6.1 ± 1.3 km). These findings suggest that dynamic stretching does not affect running endurance performance in trained male runners.  相似文献   

18.
Limited research examining the effect of taurine (TA) ingestion on human exercise performance exists. The aim of this study was to investigate the effect of acute ingestion of 1,000 mg of TA on maximal 3-km time trial (3KTT) performance in trained middle-distance runners (MDR). Eight male MDR (mean ± SD: age 19.9 ± 1.2 years, body mass 69.4 ± 6.6 kg, height 180.5 ± 7.5 cm, 800 m personal best time 121.0 ± 5.3 s) completed TA and placebo (PL) trials 1 week apart in a double-blind, randomised, crossover designed study. Participants consumed TA or PL in capsule form on arrival at the laboratory followed by a 2-h ingestion period. At the end of the ingestion period, participants commenced a maximal simulated 3KTT on a treadmill. Capillary blood lactate was measured pre- and post-3KTT. Expired gas, heart rate (HR), ratings of perceived exertion (RPE), and split times were measured at 500-m intervals during the 3KTT. Ingestion of TA significantly improved 3KTT performance (TA 646.6 ± 52.8 s and PL 658.5 ± 58.2 s) (p = 0.013) equating to a 1.7 % improvement (range 0.34–4.24 %). Relative oxygen uptake, HR, RPE and blood lactate did not differ between conditions (p = 0.803, 0.364, 0.760 and 0.302, respectively). Magnitude-based inference results assessing the likeliness of a beneficial influence of TA were 99.3 %. However, the mechanism responsible for this improved performance is unclear. TA’s potential influence on exercise metabolism may involve interaction with the muscle membrane, the coordination or the force production capability of involved muscles. Further research employing more invasive techniques may elucidate TA’s role in improving maximal endurance performance.  相似文献   

19.
20.
Heart rate, increased body-core temperature and sweating are the physiological responses to heat stress and they are collectively known as physiological strain. Our goal was to study levels of physiological strain in young farm workers aged 15–21 y. We also verified that heart rate is the response that exceeds threshold limits earliest as seen in previous studies. Personal monitoring for heat-strain measures directly physiological strain as it occurs and gives further information about each worker's state. When estimating levels of physiological strain, certain limits concerning heart rate were adjusted considering the young ages of the workers studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号