首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cysteine (Cys) is an enigmatic amino acid residue. Although one of the least abundant, it often occurs in the functional sites of proteins. Whereas free Cys is a polar amino acid, Cys in proteins is often buried, and its classification on the hydrophobicity scale is ambiguous. We hypothesized that the deviation of Cys residues from the properties of a free amino acid is due to their reactivity and addressed this possibility by examining Cys in large protein structure data sets. Compared to other amino acids, Cys was characterized by the most extreme conservation pattern, with the majority of Cys being either highly conserved or poorly conserved. In addition, clustering of Cys with another Cys residue was associated with high conservation, whereas exposure of Cys on protein surfaces was associated with low conservation. Moreover, although clustered Cys behaved as polar residues, isolated Cys was the most buried residue of all, in disagreement with known chemical properties of Cys. Thus, the anomalous hydrophobic behavior and conservation pattern of Cys can be explained by elimination of isolated Cys from protein surfaces during evolution and by clustering of other Cys residues. These findings indicate that Cys abundance is governed by Cys function in proteins rather than by the sheer chemical-physical properties of free amino acids, and suggest that a high tendency of Cys to be functionally active can considerably limit its abundance on protein surfaces.  相似文献   

2.
Dehydroascorbate reductase (DHAR) is a key enzyme in the ascorbate–glutathione cycle that maintains reduced pools of ascorbic acid and serves as an important antioxidant. In this study, to investigate functional divergence of plant DHAR family and catalytic characteristics of the glutathione binding site (G-site) residues of DHAR proteins, we cloned three DHAR genes (PtoDHAR1/2/3) from Populus tomentosa and predicted the G-site residues. PtoDHAR1 protein was localized in chloroplast, while PtoDHAR2/3 proteins showed cytosolic localizations. Three DHAR proteins showed different enzymatic activities, apparent kinetic characteristics, optimum T m and pH profiles, indicating their functional divergence. Cys20, Lys8, Pro61, Asp72 and Ser73 of PtoDHAR2 were predicted as G-site residues based on their N-terminal amino acid sequence identity and the available crystal structures of glutathione S-transferases. The biochemical functions of these residues are examined in this study through site-directed mutagenesis. The aforementioned five residues are critical components of active sites that contribute to the enzyme’s catalytic activity. Cys20, Pro61 and Asp72 of PtoDHAR2 are also responsible for maintaining proper protein structure. This study provides new insights into the functional divergence of the plant DHAR family and biochemical properties of the G-site residues in plant DHAR proteins.  相似文献   

3.
Cysteine (Cys) residues often play critical roles in proteins, for example, in the formation of structural disulfide bonds, metal binding, targeting proteins to the membranes, and various catalytic functions. However, the structural determinants for various Cys functions are not clear. Thiol oxidoreductases, which are enzymes containing catalytic redox-active Cys residues, have been extensively studied, but even for these proteins there is little understanding of what distinguishes their catalytic redox Cys from other Cys functions. Herein, we characterized thiol oxidoreductases at a structural level and developed an algorithm that can recognize these enzymes by (i) analyzing amino acid and secondary structure composition of the active site and its similarity to known active sites containing redox Cys and (ii) calculating accessibility, active site location, and reactivity of Cys. For proteins with known or modeled structures, this method can identify proteins with catalytic Cys residues and distinguish thiol oxidoreductases from the enzymes containing other catalytic Cys types. Furthermore, by applying this procedure to Saccharomyces cerevisiae proteins containing conserved Cys, we could identify the majority of known yeast thiol oxidoreductases. This study provides insights into the structural properties of catalytic redox-active Cys and should further help to recognize thiol oxidoreductases in protein sequence and structure databases.  相似文献   

4.
Glutathione peroxidase (GPX) is one of the key enzymes that protect cells against oxidative damage caused by reactive oxygen species. Previous studies of plant GPXs focused mainly on angiosperms. In contrast, little information is available on the molecular characteristics of this gene family in gymnosperms. In this study, four GPX genes (PtaGPX1, 2, 3, and 4) were cloned from the gymnosperm Pinus tabulaeformis, which showed high protein sequence identity and similar expression patterns in various tissues. The four Pinus GPX proteins were expressed in Escherichia coli, and the purified proteins used thioredoxin, but not glutathione, as an electron donor. The four Pinus GPXs showed different enzymatic activities and kinetic characteristics, suggesting functional divergence. Two conserved Cys residues (corresponding to Cys44 and Cys92 of PtaGPX3) were identified in all plant GPXs, and their functions were assessed using site-directed mutagenesis. Cys44 and Cys92 of PtaGPX3 could form an intramolecular disulfide bond under oxidizing conditions. These two residues were critical components of active sites and contributed to catalytic activity. This study provides novel insights into the functional divergence and catalytic properties of the GPX family in gymnosperms.  相似文献   

5.
Murga LF  Ondrechen MJ  Ringe D 《Proteins》2008,72(3):980-992
The predictability of catalytic and binding sites from apo structures is addressed for proteins that undergo significant conformational change upon binding. Theoretical microscopic titration curves (THEMATICS), an electrostatics-based method for the prediction of functional sites, is performed on a test set of 24 proteins with both apo and holo structures available. For 23 of these 24 proteins (96%), THEMATICS predicts the correct catalytic or binding site for both the apo and holo forms. For only one of the 24 proteins, THEMATICS makes the correct prediction for the holo structure but fails for the apo structure. The metrics used by THEMATICS to identify functional residues generally are larger in absolute value for the functional residues in the holo forms compared to the corresponding residues in the apo forms. However, even in the apo forms, these identifying metrics are still statistically significantly larger for functional residues than for residues not involved in catalysis or binding. This indicates that some of the unusual electrostatic properties of functional residues are preserved in the apo conformation. Evidence is presented that certain residues immediately surrounding the active catalytic and binding residues impart functionally important chemical and electrostatic properties to the active residues. At least parts of these microenvironments exist in the unbound conformations, such that THEMATICS is able to distinguish the functional residues even in the apo structures.  相似文献   

6.
To study the structural and functional roles of the cysteine residues at positions 36, 41, and 46 in the transmembrane domain of phospholamban (PLB), we have used Fmoc (N-(9-fluorenyl)methoxycarbonyl) solid-phase peptide synthesis to prepare alpha-amino-n-butyric acid (Abu)-PLB, the analogue in which all three cysteine residues are replaced by Abu. Whereas previous studies have shown that replacement of the three Cys residues by Ala (producing Ala-PLB) greatly destabilizes the pentameric structure, we hypothesized that replacement of Cys with Abu, which is isosteric to Cys, might preserve the pentameric stability. Therefore, we compared the oligomeric structure (from SDS-polyacrylamide gel electrophoresis) and function (inhibition of the Ca-ATPase in reconstituted membranes) of Abu-PLB with those of synthetic wild-type PLB and Ala-PLB. Molecular modeling provides structural and energetic insight into the different oligomeric stabilities of these molecules. We conclude that 1) the Cys residues of PLB are not necessary for pentamer formation or inhibitory function; 2) the steric properties of cysteine residues in the PLB transmembrane domain contribute substantially to pentameric stability, whereas the polar or chemical properties of the sulfhydryl group play only a minor role; 3) the functional potency of these PLB variants does not correlate with oligomeric stability; and 4) acetylation of the N-terminal methionine has neither a functional nor a structural effect in full-length PLB.  相似文献   

7.
Cysteine (Cys) and cystine residues in proteins are unstable under conditions used for acid hydrolysis of peptide bonds. To overcome this problem, we proposed the use of the S-pyridylethylation reaction to stabilize Cys residues as pyridylethyl-cysteine (PEC) protein derivatives. This suggestion was based on our observation that two synthetic derivatives formed by pyridylethylation of the SH group of Cys with either 2-vinylpyridine (2-VP) or 4-vinylpyridine (4-VP), designated as S--(2-pyridylethyl)-L-cysteine (2-PEC) and S--(4-pyridylethyl)-L-cysteine (4-PEC), were stable under acid conditions used to hydrolyze proteins. This was also the case for protein-bound PEC groups. Since their discovery over 30 years ago, pyridylethylation reactions have been widely modified and automated for the analysis of many structurally different proteins at levels as low as 20 picomoles, to determine the primary structures of proteins and to define the influence of SH groups and disulfide bonds on the structures and functional, enzymatic, medical, nutritional, pharmacological, and toxic properties of proteins isolated from plant, microbial, marine, animal, and human sources. Pyridylethylation has been accepted as the best method for the modification of Cys residues in proteins for subsequent analysis and sequence determination. The reaction has also been proposed to measure D-Cys, homocysteine, glutathione, tryptophan, dehydroalanine, and furanthiol food flavors. This integrated overview of the diverse literature on these reactions emphasizes general concepts. It is intended to serve as a resource and guide for further progress based on the reported application of pyridylethylation reactions to more than 150 proteins.  相似文献   

8.
The proton-coupled transporter (PCFT) mediates intestinal folate absorption and folate transport from blood across the choroid plexus. The membrane topology of PCFT has been defined using the substituted cysteine accessibility method; an intramolecular disulfide bond between the Cys 66 and 298 residues, in the first and fourth extracellular loops, respectively, is present but not essential for function. The current report describes Lys 422 mutations (K422C, K422E) that have no effect on transport activity when introduced into wild-type PCFT but result in a marked loss of activity when introduced into a Cys-less PCFT which is otherwise near-fully functional. The loss of activity of both mutant PCFTs was shown to be due to impaired protein stability and expression. Additional studies were conducted with the K422C mutation in Cys-less PCFT. The impact of re-introduction of one, two, three or five, Cys residues was assessed. While there were some differences in the impact of the different Cys residues re-introduced, restoration was attributed more to a cumulative effect rather than the specific role of individual Cys residues. Preservation of the Cys66-Cys298 intramolecular disulfide bond was not required for stability of the K422C protein. These observations are relevant to studies with Cys-less transporters utilized for the characterization of proteins with the substituted cysteine accessibility method and indicate that functional defects detected in a Cys-less protein, when the tertiary structure of the molecule is stressed, are not necessarily relevant to the wild-type protein.  相似文献   

9.
We propose Cys-X scanning as a semisynthetic approach to engineer the functional properties of recombinant proteins. As in the case of Ala scanning, key residues in the primary structure are identified, and one of them is replaced by Cys via site-directed mutagenesis. The thiol of the residue introduced is subsequently modified by alternative chemical reagents to yield diverse Cys-X mutants of the protein. This chemical approach is orthogonal to Ala or Cys scanning and allows the expansion of the repertoire of amino acid side chains far beyond those present in natural proteins. In its present application, we have introduced Cys-X residues in human glutathione transferase (GST) M2-2, replacing Met-212 in the substrate-binding site. To achieve selectivity of the modifications, the Cys residues in the wild-type enzyme were replaced by Ala. A suite of simple substitutions resulted in a set of homologous Met derivatives ranging from normethionine to S-heptyl-cysteine. The chemical modifications were validated by HPLC and mass spectrometry. The derivatized mutant enzymes were assayed with alternative GST substrates representing diverse chemical reactions: aromatic substitution, epoxide opening, transnitrosylation, and addition to an ortho-quinone. The Cys substitutions had different effects on the alternative substrates and differentially enhanced or suppressed catalytic activities depending on both the Cys-X substitution and the substrate assayed. As a consequence, the enzyme specificity profile could be changed among the alternative substrates. The procedure lends itself to large-scale production of Cys-X modified protein variants.  相似文献   

10.
Genomics has posed the challenge of determination of protein function from sequence and/or 3-D structure. Functional assignment from sequence relationships can be misleading, and structural similarity does not necessarily imply functional similarity. Proteins in the DJ-1 family, many of which are of unknown function, are examples of proteins with both sequence and fold similarity that span multiple functional classes. THEMATICS (theoretical microscopic titration curves), an electrostatics-based computational approach to functional site prediction, is used to sort proteins in the DJ-1 family into different functional classes. Active site residues are predicted for the eight distinct DJ-1 proteins with available 3-D structures. Placement of the predicted residues onto a structural alignment for six of these proteins reveals three distinct types of active sites. Each type overlaps only partially with the others, with only one residue in common across all six sets of predicted residues. Human DJ-1 and YajL from Escherichia coli have very similar predicted active sites and belong to the same probable functional group. Protease I, a known cysteine protease from Pyrococcus horikoshii, and PfpI/YhbO from E. coli, a hypothetical protein of unknown function, belong to a separate class. THEMATICS predicts a set of residues that is typical of a cysteine protease for Protease I; the prediction for PfpI/YhbO bears some similarity. YDR533Cp from Saccharomyces cerevisiae, of unknown function, and the known chaperone Hsp31 from E. coli constitute a third group with nearly identical predicted active sites. While the first four proteins have predicted active sites at dimer interfaces, YDR533Cp and Hsp31 both have predicted sites contained within each subunit. Although YDR533Cp and Hsp31 form different dimers with different orientations between the subunits, the predicted active sites are superimposable within the monomer structures. Thus, the three predicted functional classes form four different types of quaternary structures. The computational prediction of the functional sites for protein structures of unknown function provides valuable clues for functional classification.  相似文献   

11.
Human and mouse granulocyte-macrophage-colony-stimulating factors (hGM-CSF and mGM-CSF, respectively), isolated from Escherichia coli cells expressing the corresponding human and mouse genes, have been characterized. The observed properties of the proteins have been compared with those properties which can be deduced from the DNA sequence alone and the published properties of natural GM-CSFs. The purified E. coli-derived proteins were found to have the expected molecular masses, amino acid compositions and N- and C-terminal amino acid sequences. The finding of 70-90% unprocessed N-terminal methionine for both proteins is discussed. The four Cys residues were found to be involved in two intramolecular disulphide bonds, linking the first and third, and second and fourth Cys residues. This disulphide bond arrangement is probably the one existing in natural material, since, although not glycosylated, both E. coli-derived proteins showed biological activity (colony stimulating assay for hGM-CSF, and cell proliferation assay for mGM-CSF) comparable with that reported for the respective proteins purified from animal cells.  相似文献   

12.
Mani RS  Usova EV  Cass CE  Eriksson S 《Biochemistry》2006,45(11):3534-3541
Human deoxycytidine kinase (dCK) phosphorylates both pyrimidine and purine deoxynucleosides, including numerous nucleoside analogue prodrugs. Energy transfer studies of transfer between Trp residues of dCK and the fluorescent probe N-(1-pyrene)maleimide (PM), which specifically labels Cys residues in proteins, were performed. Two of the six Cys residues in dCK were labeled, yielding a protein that was functionally active. We determined the average distances between PM-labeled Cys residues and Trp residues in dCK in the absence and presence of various pyrimidine and purine nucleoside analogues with the Trp residues as energy donors and PM-labeled Cys residues as acceptors. The transfer efficiency was determined from donor intensity quenching and the F?rster distance R(0) at which the efficiency of energy transfer is 50%, which was 19.90 A for dCK-PM. The average distance R between the Trp residues and the labeled Cys residues in dCK-PM was 18.50 A, and once substrates bound, this distance was reduced, demonstrating conformational changes. Several of the Cys residues of dCK were mutated to Ala, and the properties of the purified mutant proteins were studied. PM labeled a single Cys residue in Cys-185-Ala dCK, suggesting that one of the two Cys residues labeled in wild-type dCK was Cys 185. The distance between the single PM-labeled Cys residue and the Trp residues in Cys-185-Ala dCK was 20.75 A. Binding of nucleosides had no effect on the pyrene fluorescence of Cys-185-Ala dCK, indicating that the conformational changes observed upon substrate binding to wild-type dCK-PM involved the "lid region" of which Cys 185 is a part. The substrate specificity of Cys-185-Ala dCK was altered in that dAdo and UTP were better substrates for the mutant than for the wild-type enzyme.  相似文献   

13.
Kunitz-type trypsin inhibitors from legume seeds have been characterized structurally. The presence of Cys–Cys in single or double chains shows a new pattern of proteins structurally not so closely related to STI. Therefore, briefly, with regard to cysteine content, plant Kunitz proteinase inhibitors may be classifed into four groups: no Cys–Cys at all, one, two and more than two Cys residues. Functional properties and diversity of these proteins are also briefly discussed.  相似文献   

14.
Thanks to its chemical plasticity, cysteine (Cys) is a very versatile player in proteins. A major determinant of Cys reactivity is pKa: the ability to predict it is deemed critical in redox bioinformatics. I considered different computational methods for pKa predictions and ultimately applied one (propka, ppka1) to various datasets; for all residues I assessed the effect of (1) hydrogen bonding, electrostatics and solvation on predictions and (2) protein mobility on pKa variability. Particularly for Cys, exposure and H-bond contributions heavily dictated propka predictions. The prominence of H-bond contributions was previously reported: this may explain the effectiveness of ppka1 (with Cys, tested in a benchmark). However ppka1 was also very sensitive to protein mobility; I assessed the effects of mobility on particularly large (compared to previous studies) datasets of structural ensembles; I found that exposed Cys presented the highest pKa variability, ascribable to correspondingly high H-bond fluctuations associated with protein flexibility. The benefit of including protein dynamics in pKa predictions was previously proposed, but empirical methods were never tested in this sense; instead, giving their outstanding speed, they could lend particularly well to this purpose. I devised a strategy combining short range molecular dynamics with ppka1; the protocol aimed to mitigate high ppka1 variability by including a “statistical view” of fast conformational changes. Tested in a benchmark, the strategy lead to improved performances. These results provide new insights on Cys bioinformatics (pKa prediction protocols) and Cys biology (effect of mobility on exposed Cys properties).  相似文献   

15.
Pectin methylesterase inhibitor   总被引:1,自引:0,他引:1  
Pectin methylesterase (PME) is the first enzyme acting on pectin, a major component of plant cell wall. PME action produces pectin with different structural and functional properties, having an important role in plant physiology. Regulation of plant PME activity is obtained by the differential expression of several isoforms in different tissues and developmental stages and by subtle modifications of cell wall local pH. Inhibitory activities from various plant sources have also been reported. A proteinaceous inhibitor of PME (PMEI) has been purified from kiwi fruit. The kiwi PMEI is active against plant PMEs, forming a 1:1 non-covalent complex. The polypeptide chain comprises 152 amino acid residues and contains five Cys residues, four of which are connected by disulfide bridges, first to second and third to fourth. The sequence shows significant similarity with the N-terminal pro-peptides of plant PME, and with plant invertase inhibitors. In particular, the four Cys residues involved in disulfide bridges are conserved. On the basis of amino acid sequence similarity and Cys residues conservation, a large protein family including PMEI, invertase inhibitors and related proteins of unknown function has been identified. The presence of at least two sequences in the Arabidopsis genome having high similarity with kiwi PMEI suggests the ubiquitous presence of this inhibitor. PMEI has an interest in food industry as inhibitor of endogenous PME, responsible for phase separation and cloud loss in fruit juice manufacturing. Affinity chromatography on resin-bound PMEI can also be used to concentrate and detect residual PME activity in fruit and vegetable products.  相似文献   

16.
17.
Predicting the oxidation state of cysteines by multiple sequence alignment   总被引:4,自引:0,他引:4  
MOTIVATION: Protein sequences found in databanks usually do not report post translational covalent modifications such as the oxidation state of cystein (Cys) residues. Accurate prediction of whether a functionally or structurally important Cys occurs in the oxidized or thiol form would be helpful for molecular biology experiments and structure prediction. RESULTS: A new method is presented for predicting the oxidation state of Cys residues based on multiple sequence alignments and on the observation that Cys tends to occur in the same oxidation state within the same protein. The prediction of the redox state of Cys performs above 82%. The oxidation state of Cys correlates with the cellular location of the given protein within the cell, but the correlation is not perfect (up to 70%). We also perform a statistical analysis of the different redox states of Cys found in secondary structures and buried positions, and of the secondary structures linked by disulfide bonds. The results suggest that the natural borderline lies between the different oxidation states of Cys rather than between the half cystines and cysteins. AVAILABILITY: A web server implementing the prediction method is available at http://guitar.rockefeller.edu/approximately andras/cyspred.html CONTACT: fisera@rockefeller.edu  相似文献   

18.
A set of wild-type and mutant human, woodchuck, and duck hepatitis viral core proteins have been prepared and used to study the free thiol groups and the disulfide bonding pattern present within the core particle. Human (HBcAg) and woodchuck (WHcAg) core proteins contain 4 cysteine residues, whereas duck (DHcAg) core protein contains a single cysteine residue. Each of the cysteines of HBcAg has been eliminated, either singly or in combinations, by a two-step mutagenesis procedure. All of the proteins were shown to have very similar physical and immunochemical properties. All assemble into essentially identical core particle structures. Therefore disulfide bonds are not essential for core particle formation. No intra-chain disulfide bonds occur. Cys107 is a free thiol buried within the particle structure, whereas Cys48 is present partly as a free sulfhydryl which is exposed at the surface of the particle. Cys61 is always and Cys48 is partly involved in interchain disulfide bonds with the identical residues of another monomer, whereas Cys183 is always involved in a disulfide bond with the Cys183 of a different monomer. WHcAg has the same pattern of bonding, whereas DHcAg lacks any disulfide bonds, and the single free sulfhydryl, Cys153 which is equivalent to Cys107 of HBcAg, is buried.  相似文献   

19.
Budding yeast septins assemble into hetero‐octamers and filaments required for cytokinesis. Solvent‐exposed cysteine (Cys) residues provide sites for attaching substituents useful in assessing assembly kinetics and protein interactions. To introduce Cys at defined locations, site‐directed mutagenesis was used, first, to replace the native Cys residues in Cdc3 (C124 C253 C279), Cdc10 (C266), Cdc11 (C43 C137 C138), Cdc12 (C40 C278), and Shs1 (C29 C148) with Ala, Ser, Val, or Phe. When plasmid‐expressed, each Cys‐less septin mutant rescued the cytokinesis defects caused by absence of the corresponding chromosomal gene. When integrated and expressed from its endogenous promoter, the same mutants were fully functional, except Cys‐less Cdc12 mutants (which were viable, but exhibited slow growth and aberrant morphology) and Cdc3(C124V C253V C279V) (which was inviable). No adverse phenotypes were observed when certain pairs of Cys‐less septins were co‐expressed as the sole source of these proteins. Cells grew less well when three Cys‐less septins were co‐expressed, suggesting some reduction in fitness. Nonetheless, cells chromosomally expressing Cys‐less Cdc10, Cdc11, and Cdc12, and expressing Cys‐less Cdc3 from a plasmid, grew well at 30°C. Moreover, recombinant Cys‐less septins—or where one of the Cys‐less septins contained a single Cys introduced at a new site—displayed assembly properties in vitro indistinguishable from wild‐type. Proteins 2013; 81:1964–1979. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
The complete amino acid sequence of echinoidin, the proposed name for a lectin from the coelomic fluid of the sea urchin Anthocidaris crassispina, has been determined by sequencing the peptides obtained from tryptic, Staphylococcus aureus V8 protease, chymotryptic, and thermolysin digestions. Echinoidin is a multimeric protein (Giga, Y., Sutoh, K., and Ikai, A. (1985) Biochemistry 24, 4461-4467) whose subunit consists of a total of 147 amino acid residues and one carbohydrate chain attached to Ser38. The molecular weight of the polypeptide without carbohydrate was calculated to be 16,671. Each polypeptide chain contains seven half-cystines, and six of them form three disulfide bonds in the single polypeptide chain (Cys3-Cys14, Cys31-Cys141, and Cys116-Cys132), while Cys2 is involved in an interpolypeptide disulfide linkage. From secondary structure prediction by the method of Chou and Fasman (Chou, P. Y., and Fasman, G. D. (1974) Biochemistry 13, 211-222) the protein appears to be rich in beta-sheet and beta-turn structures and poor in alpha-helical structure. The sequence of the COOH-terminal half of echinoidin is highly homologous to those of the COOH-terminal carbohydrate recognition portions of rat liver mannose-binding protein and several other hepatic lectins. This COOH-terminal region of echinoidin is also homologous to the central portion of the lectin from the flesh fly Sarcophaga peregrina. Moreover, echinoidin contains an Arg-Gly-Asp sequence which has been proposed to be a basic functional unit in cellular recognition proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号