首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B cells require MHC class II (MHC II)-restricted cognate help and CD40 engagement by CD4(+) T follicular helper (T(FH)) cells to form germinal centers and long-lasting Ab responses. Invariant NKT (iNKT) cells are innate-like lymphocytes that jumpstart the adaptive immune response when activated by the CD1d-restricted lipid α-galactosylceramide (αGalCer). We previously observed that immunization of mice lacking CD4(+) T cells (MHC II(-/-)) elicits specific IgG responses only when protein Ags are mixed with αGalCer. In this study, we investigated the mechanisms underpinning this observation. We find that induction of Ag-specific Ab responses in MHC II(-/-) mice upon immunization with protein Ags mixed with αGalCer requires CD1d expression and CD40 engagement on B cells, suggesting that iNKT cells provide CD1d-restricted cognate help for B cells. Remarkably, splenic iNKT cells from immunized MHC II(-/-) mice display a typical CXCR5(hi)programmed death-1(hi)ICOS(hi)Bcl-6(hi) T(FH) phenotype and induce germinal centers. The specific IgG response induced in MHC II(-/-) mice has shorter duration than that developing in CD4-competent animals, suggesting that iNKT(FH) cells preferentially induce transient rather than long-lived Ab responses. Together, these results suggest that iNKT cells can be co-opted into the follicular helper function, yet iNKT(FH) and CD4(+) T(FH) cells display distinct helper features, consistent with the notion that these two cell subsets play nonredundant functions throughout immune responses.  相似文献   

2.
Th17 cells are pro-inflammatory CD4+T cells, which are important in immune responses against fungal pathogens and extracellular bacteria and have also been implicated in various autoimmune syndromes. However, their role in supporting B cell responses in these scenarios remains unclear, representing a significant lapse in our understanding of the role Th17 play in vaccine responses and the regulation of autoimmunity. We employed T cell and B cell receptor transgenic mice specific for model antigens, and adoptive transfer approaches that allowed the tracking of cognate B and T cells in situ and ex vivo using immunological methods. We have found that T cells activated under Th17 polarising conditions have a greater capacity to provide cognate B cell help compared with Th1 polarised populations, supporting higher expansion of antigen specific B cells and enhanced antibody titres. This advantage is associated with the increased persistence of Th17 polarised cells in areas of the lymph nodes where they can provide help (i.e. the B cell follicles). Also the Th17 cells are characterised by their higher expression of ICOS, a costimulatory molecule important for B cell help. Surprisingly, contrary to published reports, Th17 cells were not detected inside germinal centres, although they were found in close proximity to cognate B cells in the follicle early in the genesis of the humoral immune response. These data indicate that, Th17 cells have a more significant role earlier in the initiation/development of the germinal centre response and/or germinal centre-independent events, consistent with their early effector status.  相似文献   

3.
High expression of CXCR5 is one of the defining hallmarks of T follicular helper cells (T(FH)), a CD4 Th cell subset that promotes germinal center reactions and the selection and affinity maturation of B cells. CXCR5 is also expressed on 20-25% of peripheral blood human central memory CD4 T cells (T(CM)), although the definitive function of these cells is not fully understood. The constitutive expression of CXCR5 on T(FH) cells and a fraction of circulating T(CM) suggests that CXCR5(+) T(CM) may represent a specialized subset of memory-type T(FH) cells programmed for homing to follicles and providing B cell help. To verify this assumption, we analyzed this cell population and show its specialized function in supporting humoral immune responses. Compared with their CXCR5(-) T(CM) counterparts, CXCR5(+) T(CM) expressed high levels of the chemokine CXCL13 and efficiently induced plasma cell differentiation and Ig secretion. We found that the distinct B cell helper qualities of CXCR5(+) T(CM) were mainly due to high ICOS expression and pronounced responsiveness to ICOS ligand costimulation together with large IL-10 secretion. Furthermore, B cell helper attributes of CXCR5(+) T(CM) were almost exclusively acquired on cognate interaction with B cells, but not with dendritic cells. This implies that a preferential recruitment of circulating CXCR5(+) T(CM) to CXCL13-rich B cell follicles is required for the promotion of a quick and efficient protective secondary humoral immune response. Taken together, we propose that CXCR5(+) T(CM) represent a distinct memory cell subset specialized in supporting Ab-mediated immune responses.  相似文献   

4.
The development of a vaccine based on human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) that elicits potent protective antibodies against infection has been challenging. Recently, we compared the antibody production patterns of HIV-1 Env gp120 and hepatitis B virus surface antigen (HBsAg) to provide insights into how we may improve the protective efficacy of Env-based immunogens. Our previous study showed that HIV Env and HBsAg display different mechanisms of antibody elicitation and that T cells facilitate the responses to repeated immunizations. Here, to elucidate the detailed roles of primary immunization in immune memory response formation and antibody production, we immunized C57BL/6 mice with each antigen and evaluated the development of T follicular helper (Tfh) cells, germinal centers, and the memory responses involved in prime and boost immunizations. We found that after prime immunization, compared with HBsAg, gp120 induced higher frequencies of Tfh cells and programmed death (PD)-1+ T cells, greater major histocompatibility complex II expression on B cells, comparable activated B cells, but weaker germinal center (GC) reactions and memory B cell responses in the draining lymph nodes, accompanied by slower antibody recall responses and poor immune memory responses. The above results suggested that more PD-1+ T cells arising in primary immunization may serve as major contributors to the slow antibody recall response elicited by HIV-1 Env.  相似文献   

5.
We show herein that B cell Ag receptor (BCR) triggering, but not stimulation by CD40 mAb and/or IL-4, rapidly induced the coordinated expression of two closely related T cell chemoattractants, macrophage inflammatory protein-1 beta (MIP-1 beta) and MIP-1 alpha, by human B cells. Naive, memory, and germinal center B cells all produced MIP-1 alpha/beta in response to BCR triggering. In contrast to MIP-1 alpha/beta, IL-8, which is spontaneously produced by germinal center B cells but not by naive and memory B cells, was not regulated by BCR triggering. Culturing follicular dendritic cell-like HK cells with activated B cells did not regulate MIP-1 alpha/beta production, but it did induce production of IL-8 by HK cells. Microchemotaxis assays showed that CD4+CD45RO+ T cells of the effector/helper phenotype actively migrated along a chemotactic gradient formed by BCR-stimulated B cells. This effect was partially blocked by anti-MIP-1 beta and anti-CC chemokine receptor 5 Ab, but not by anti-MIP-1 alpha Ab suggesting that MIP-1 beta plays a major role in this chemoattraction. Since maturation of the B cell response to a peptide Ag is mostly dependent on the availability of T cell help, the ability of Ag-stimulated B cells to recruit T cells via MIP-1 alpha/beta, may represent one possible mechanism enabling cognate interactions between rare in vivo Ag-specific T and B cells.  相似文献   

6.
Establishment of persistent infection in memory B cells by murid herpesvirus-4 (MuHV-4) depends on the proliferation of latently infected germinal center B cells, for which T cell help is essential. Whether the virus is capable of modulating B-T helper cell interaction for its own benefit is still unknown. Here, we investigate if the MuHV-4 latency associated M2 protein, which assembles multiprotein complexes with B cell signaling proteins, plays a role. We observed that M2 led to the upregulation of adhesion and co-stimulatory molecules in transduced B cell lines. In an MHC-II restricted OVA peptide-specific system, M2 polarized to the B-T helper contact zone. Furthermore, it promoted B cell polarization, as demonstrated by the increased proximity of the B cell microtubule organizing center to the interface. Consistent with these data, M2 promoted the formation of B-T helper cell conjugates. In an in vitro competition assay, this translated into a competitive advantage, as T cells preferentially conjugated with M2-expressing B cells. However, expression of M2 alone in B cells was not sufficient to lead to T cell activation, as it only occurred in the presence of specific peptide. Taken together, these findings support that M2 promotes the formation of B-T helper cell conjugates. In an in vivo context this may confer a competitive advantage to the infected B cell in acquisition of T cell help and initiation of a germinal center reaction, hence host colonization.  相似文献   

7.
8.
It has long been understood that both antibody and delayed-type hypersensitivity responses are induced through collaborative events in which the determinants recognized by the precursor cells must be physically linked to the determinants recognized by the helper. Although it is clear that the generation of memory cytotoxic T lymphocyte precursors (CTLp) involves linked recognition of determinants, the induction of CTL responses has been viewed as being dependent upon interleukin 2 (IL 2), which could be provided by a helper cell, but independent of requirements for antigen bridging. In this work, we have designed a system that lacks exogenous IL 2 by using as our source of help, antigen-specific helper molecules derived from helper T cells. These soluble helper molecules are uncontaminated by IL 2 and unlike a helper cell, are unable to produce IL 2. Helper molecules specific for chicken red blood cells (Crbc) and for a synthetic polypeptide, poly 18, were tested. Thymocyte responders require a source of help to respond to alloantigens intrinsically expressed on the surface of adherent stimulator cells. To analyze the mechanism whereby the helper molecules acted, we used a system involving recognition of haptenic and carrier determinants that were physically linked by virtue of being located on the same cell surface (intra-structural linkage). Adherent stimulator cells were pulsed with Crbc or poly 18 so that the alloantigens recognized by the thymocyte CTLp (intrinsically expressed class I) were either linked or unlinked to the carrier determinants (Crbc or poly 18) presented by the adherent cells and recognized by the helper molecules. Both types of helper molecule were shown to be antigen-specific in crisscross experiments. The helper molecules specific for Crbc were able to induce the thymocyte CTLp only when both hapten and carrier were present on the same stimulator cell surface. Because we were not able to detect a requirement for H-2-restricted recognition of carrier antigen, this inductive event must be viewed as requiring linked associative recognition of determinants, but being noncognate. In contrast, the helper molecules recognizing poly 18 showed a requirement for both physical linkage of determinants and for H-2 restricted recognition, indicating that the mechanism of induction was cognate in nature. Therefore, we have shown that interactions between CTLp and soluble, antigen-specific, helper cell-derived inductive molecules are similar in nature to those of other T cell precursors and of B cells in the stringent requirement for close physical proximity achieved by linked or cognate recognition of determinants across an antigen bridge.  相似文献   

9.
Germinal centers are structures that promote humoral memory cell formation and affinity maturation, but the triggers for their development are not entirely clear. Activated extrafollicular B cells can form IgM-producing plasmablasts or enter a germinal center reaction and differentiate into memory or plasma cells, mostly of the IgG isotype. Vesicular stomatitis virus (VSV) induces both types of response, allowing events that promote each of these pathways to be studied. In this work, extrafollicular vs germinal center responses were examined at a cellular level, analyzing VSV-specific B cells in infected mice. We show that VSV-specific germinal centers are transiently formed when insufficient proportions of specific T cell help is available and that strong B cell activation in cells expressing high levels of the VSV-specific BCR promoted their differentiation into early blasts, whereas moderate stimulation of B cells or interaction with Th cells restricted extrafollicular responses and promoted germinal center formation.  相似文献   

10.
CD4 T cell help for B cells is critical for effective Ab responses. Although many of the molecules involved in helper functions of naive CD4 T cells have been characterized, much less is known about the helper capabilities of memory CD4 T cells, an important consideration for the design of vaccines that aim to prime protective memory CD4 T cells. In this study, we demonstrate that memory CD4 T cells enable B cells to expand more rapidly and class switch earlier than do primary responding CD4 T cells. This accelerated response does not require large numbers of memory cells, and similar numbers of primary responding cells provide less effective help than do memory cells. However, only memory CD4 T cells that express the B cell follicle homing molecule, CXCR5, are able to accelerate the response, suggesting that the rapidity of the Ab response depends on the ability of CD4 memory T cells to migrate quickly toward B cells.  相似文献   

11.
The cell surface phenotype of dinitrophenol (DNP)-specific memory B cells, defined by their capacity to transfer IgG responses into syngeneic irradiated recipients, was assessed using two markers of relevance to lymphocyte migratory properties: (i) peanut agglutinin, which binds to terminal galactosyl residues expressed at high levels by several nonmigrating lymphocyte subsets and, among lymph node B cells, is highly specific for germinal center cells; and (ii) MEL-14, a monoclonal antibody specific for lymphocyte surface receptors required for migration from the blood into peripheral lymph nodes. At various times after primary or secondary immunization with DNP-keyhole limpet hemocyananin (KLH), lymph node B cells were separated by fluorescence-activated cell sorting on the basis of staining with PNA and/or MEL-14, and the presence of B-memory cells in each fraction was assessed by adoptive transfer with antigen (DNP-KLH) and helper T cells. One week after immunization, most of the memory sorted in the PNAhi population, confirming a previous report by R. F. Coico, B. S. Bhogal, and G. J. Thorbecke (J. Immunol. 131, 2254, 1983) that early memory B cells or their precursors are contained within the germinal center cell population, a population which is known to be MEL-14- and migratory-incompetent. Six weeks after primary stimulation, however, the bulk of memory cells, unlike germinal center cells, were MEL-14hi. After secondary immunization, memory was still predominantly MEL-14+ and PNAlo, although in some experiments adoptive responses were transferred by all sorted fractions. The results are consistent with the hypothesis that antigen-specific B cells initially undergo local (sessile) differentiation and proliferation in germinal centers, where they develop the capacity for adoptive transfer of antigen-specific secondary responses, but that with continued development their long-lived memory-containing progeny express a phenotype permitting their reentry into the recirculating lymphocyte pool.  相似文献   

12.
Influenza virus infection results in strong, mainly T-dependent, extrafollicular and germinal center B cell responses, which provide lifelong humoral immunity against the homotypic virus strain. Follicular T helper cells (T(FH)) are key regulators of humoral immunity. Questions remain regarding the presence, identity, and function of T(FH) subsets regulating early extrafollicular and later germinal center B cell responses. This study demonstrates that ICOS but not CXCR5 marks T cells with B helper activity induced by influenza virus infection and identifies germinal center T cells (T(GC)) as lymph node-resident CD4(+) ICOS(+) CXCR4(+) CXCR5(+) PSGL-1(lo) PD-1(hi) cells. The CXCR4 expression intensity further distinguished their germinal center light and dark zone locations. This population emerged strongly in regional lymph nodes and with kinetics similar to those of germinal center B cells and were the only T(FH) subsets missing in influenza virus-infected, germinal center-deficient SAP(-/-) mice, mice which were shown previously to lack protective memory responses after a secondary influenza virus challenge, thus indicting the nonredundant functions of CXCR4- and CXCR5-coexpressing CD4 helper cells in antiviral B cell immunity. CXCR4-single-positive T cells, present in B cell-mediated autoimmunity and regarded as "extrafollicular" helper T cells, were rare throughout the response, despite prominent extrafollicular B cell responses, revealing fundamental differences in autoimmune- and infection-induced T-dependent B cell responses. While all ICOS(+) subsets induced similar antibody levels in vitro, CXCR5-single-positive T cells were superior in inducing B cell proliferation. The regulation of T cell localization, marked by the single and coexpression of CXCR4 and CXCR5, might be an important determinant of T(FH) function.  相似文献   

13.
Influenza virus vaccination strategies are focused upon the elicitation of protective antibody responses through administration of viral protein through either inactivated virions or live attenuated virus. Often overlooked in this strategy is the CD4 T cell response: how it develops into memory, and how it may support future primary B cell responses to heterologous infection. Through the utilization of a peptide-priming regimen, this study describes a strategy for developing CD4 T cell memory with the capacity to robustly expand in the lung-draining lymph node after live influenza virus infection. Not only were frequencies of antigen-specific CD4 T cells enhanced, but these cells also supported an accelerated primary B cell response to influenza virus-derived protein, evidenced by high anti-nucleoprotein (NP) serum antibody titers early, while there is still active viral replication ongoing in the lung. NP-specific antibody-secreting cells and heightened frequencies of germinal center B cells and follicular T helper cells were also readily detectable in the draining lymph node. Surprisingly, a boosted memory CD4 T cell response was not sufficient to provide intermolecular help for antibody responses. Our study demonstrates that CD4 T cell help is selective and limiting to the primary antibody response to influenza virus infection and that preemptive priming of CD4 T cell help can promote effective and rapid conversion of naive B cells to mature antibody-secreting cells.  相似文献   

14.
The generation of antigen-specific antibodies and the development of immunological memory require collaboration between B and T cells. T cell-secreted IL-4 is important for B cell survival, isotype switch to IgG1 and IgE, affinity maturation, and the development of germinal centers (GC). Fyn, a member of the Src family tyrosine kinase, is widely expressed in many cell types, including lymphocytes. This kinase is known to interact with both the B cell and T cell receptor (BCR and TCR, respectively). While Fyn deletion does not impair the development of immature T cells and B cells, TCR signaling is altered in mature T cells. The current study demonstrates that Fyn deficient (KO) B cells have impaired IL-4 signaling. Fyn KO mice displayed low basal levels of IgG1, IgE and IgG2c, and delayed antigen-specific IgG1 and IgG2b production, with a dramatic decrease in antigen-specific IgG2c following immunization with a T-dependent antigen. Defects in antibody production correlated with significantly reduced numbers of GC B cells, follicular T helper cells (TFH), and splenic plasma cells (PC). Taken together, our data demonstrate that Fyn kinase is required for optimal humoral responses.  相似文献   

15.
Mutations in SH2D1A resulting in lack of SLAM-associated protein (SAP) expression cause the human genetic immunodeficiency X-linked lymphoproliferative disease. A severe block in germinal center development and lack of long-term humoral immunity is one of the most prominent phenotypes of SAP(-) mice. We show, in this study, that the germinal center block is due to an essential requirement for SAP expression in Ag-specific CD4 T cells to develop appropriate follicular helper T cell functions. It is unknown what signaling molecules are involved in regulation of SAP-dependent CD4 T cell help functions. SAP binds to the cytoplasmic tail of SLAM, and we show that SLAM is expressed on resting and activated CD4 T cells, as well as germinal center B cells. In addition, SAP can recruit Fyn kinase to SLAM. We have now examined the role(s) of the SLAM-SAP-Fyn signaling axis in in vivo CD4 T cell function and germinal center development. We observed normal germinal center development, long-lived plasma cell development, and Ab responses in SLAM(-/-) mice after a viral infection (lymphocytic choriomeningitis virus). In a separate series of experiments, we show that SAP is absolutely required in CD4 T cells to drive germinal center development, and that requirement does not depend on SAP-Fyn interactions, because CD4 T cells expressing SAP R78A are capable of supporting normal germinal center development. Therefore, a distinct SAP signaling pathway regulates follicular helper CD4 T cell differentiation, separate from the SLAM-SAP-Fyn signaling pathway regulating Th1/Th2 differentiation.  相似文献   

16.
Data presented in this paper demonstrate the existence of two separate pathways by which a single T cell clone can induce B cell differentiation. With the use of high doses of antigen, a T cell clone can induce a primary antibody response in unprimed B cells. With the use of low doses of antigen, the same T cell clone can induce an immunoglobulin (Ig)G response in primed B cells. The primary response is accompanied by T cell proliferation and lymphokine production (interleukin 2, B cell growth factor, B cell differentiation factor for immunoglobulin M, and B cell differentiation factor for immunoglobulin G). The secondary response does not require proliferation and occurs independently of detectable lymphokine production. Variants of the wild type T cell helper clone have been isolated. One variant can provide help to unprimed B cells when high doses of antigen are used. This variant cannot provide help to primed B cells when low doses of antigen are used, nor can it provide help to CBA/N "xid" B cells at any antigen concentration tested. Additional variants have been isolated that proliferate on antigen-pulsed-presenting cells, but fail to secrete detectable lymphokines and do not induce B cell differentiation. These results suggest that a single T cell helper clone has multiple functional activities that can be independently expressed.  相似文献   

17.
In vitro studies have confirmed that cognate interactions between T and B cells are required to demonstrate enhanced helper activity using T cells with upregulated IgD-receptors (IgD-Rs). We studied the mechanism by which IgD-R+ T cells facilitate antibody responses by examining whether T cells also benefit from their expression of IgD-R. Experiments were designed to determine whether upregulation of IgD-R on T cells facilitates antigen presentation by IgD+ B cells. Goat Ig-primed splenic T cells from BALB/c mice were tested for their ability to respond to antigen-presenting B cells treated with goat anti-mouse (GAM) IgM or GAM IgD. T cell responses to GAM IgM and GAM IgD presented by B cells were significantly higher when goat Ig-primed cells were induced to express IgD-R by exposure to oligomeric IgD compared with goat Ig-primed control T cells. This effect was inhibited when monomeric IgD was added to the cultures. No differences in T and IgD-R+ T cell responses were seen using adherent cells as APCs. B cells from IgD-/- mice were also tested. Such B cells present antigen to IgD-R+ T cells without promoting enhanced responses compared with B cells from heterozygous IgD+/- mice. These studies suggest that IgD may play a costimulatory role during antigen presentation. We conclude that when T cells are induced to express IgD-R, these lectin-like receptors can ligate B cell membrane IgD during antigen presentation to facilitate responses of each of the cells engaged in cognate interaction, yielding enhanced antigen-specific T cell and B cell responses.  相似文献   

18.
ICOS is a new member of the CD28 family of costimulatory molecules that is expressed on activated T cells. Its ligand B7RP-1 is constitutively expressed on B cells. Although the blockade of ICOS/B7RP-1 interaction inhibits T cell-dependent Ab production and germinal center formation, the mechanism remains unclear. We examined the contribution of ICOS/B7RP-1 to the generation of CXCR5+ follicular B helper T (T(FH)) cells in vivo, which preferentially migrate to the B cell zone where they provide cognate help to B cells. In the spleen, anti-B7RP-1 mAb-treated or ICOS-deficient mice showed substantially impaired development of CXCR5+ T(FH) cells and peanut agglutinin+ germinal center B cells in response to primary or secondary immunization with SRBC. Expression of CXCR5 on CD4+ T cells was associated with ICOS expression. Adoptive transfer experiments showed that the development of CXCR5+ T(FH) cells was enhanced by interaction with B cells, which was abrogated by anti-B7RP-1 mAb treatment. The development of CXCR5+ T(FH) cells in the lymph nodes was also inhibited by the anti-B7RP-1 mAb treatment. These results indicated that the ICOS/B7RP-1 interaction plays an essential role in the development of CXCR5+ T(FH) cells in vivo.  相似文献   

19.
Summary The germinal centre forms a specialized microenvironment thought to play a key role in the induction of antibody synthesis, affinity maturation of B cells and memory B cell formation. Clonal-expanded follicular B lymphocytes with mutated antigen receptors (centrocytes) have to be selected on the basis of their capacity to compete for binding to antigen held in limited amounts on the follicular dendritic cells. In this way, only high-affinity B cells are selected. Binding to a follicular dendritic cell is an unconditional prerequisite for centrocytes to survive. Cells that do not succeed in binding to a follicular dendritic cell die rapidly by apoptosis. Apoptosis is a common form of cell death characterized by the activation of an endonuclease culminating in nuclear destruction. The pathway by which apoptosis is triggered varies from cell type to cell type. However, for germinal centre B cells this process is still poorly understood.  相似文献   

20.
Feng  Han  Zhao  Xiaohong  Xie  Jenny  Bai  Xue  Fu  Weiwei  Chen  Hairong  Tang  Hong  Wang  Xiaohu  Dong  Chen 《中国科学:生命科学英文版》2022,65(6):1075-1090
Science China Life Sciences - T follicular helper (Tfh) cells are critical in providing help for B cells in the germinal center reaction. Tfh cell plasticity, especially with regard to their...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号