共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Drosophila tudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning 总被引:2,自引:0,他引:2
Pole cells and posterior segmentation in Drosophila are specified by maternally encoded genes whose products accumulate at the posterior pole of the oocyte. Among these genes is tudor (tud). Progeny of hypomorphic tud mothers lack pole cells and have variable posterior patterning defects. We have isolated a null allele to further investigate tud function. While no pole cells are ever observed in embryos from tud-null mothers, 15% of these embryos have normal posterior patterning. OSKAR (OSK) and VASA (VAS) proteins, and nanos (nos) RNA, all initially localize to the pole plasm of tud-null oocytes and embryos from tud-null mothers, while localization of germ cell-less (gcl) and polar granule component (pgc), is undetectable or severely reduced. In embryos from tud-null mothers, polar granules are greatly reduced in number, size, and electron density. Thus, tud is dispensable for somatic patterning, but essential for pole cell specification and polar granule formation. 相似文献
3.
4.
5.
France Docquier Olivier Saget Françoise Forquignon Neel B. Randsholt Pedro Santamaria 《Development genes and evolution》1996,205(5-6):203-214
We present a genetic analysis showing that the Drosophila melanogaster gene multi sex combs (mxc; Santamaria and Randsholt 1995) is needed for proliferation of the germline. Fertility is the feature most easily affected by weak hypomorphic mutations of this very pleiotropic locus. Pole cell formation and early steps of gonadogenesis conform to the wild-type in embryos devoid of zygotic mxc
+ product. mxc mutant gonad phenotypes and homozygous mxc germline clones suggest a role for mxc
+ in control of germ cell proliferation during the larval stages. mxc
+ requirement is germ cell autonomous and specific in females, whilst in males mxc
+ product is also needed in somatic cells of the gonads. Although mxc can be classified among the Polycomb group (Pc-G) of genes, negative trans-regulators of the ANT-C and BX-C gene complexes, germline requirement for mxc appears independent of a need for other Pc-C gene products, and mxc gonad phenotypes are different from those induced by mutations in BX-C genes. We discuss the possible functions of the mxc
+ product which helps to maintain homeotic genes repressed and prevents premature larval haemocyte differentiation and neoplasic overgrowth, but promotes growth and differentiation of male and female gonads.F.D. and O.S. should be considered as equal first authors 相似文献
6.
7.
Adult stem cells are important in replenishing aged cells to maintain tissue homeostasis. Aging in turn may exert profound effects on stem cell's regenerative potential, but to date the mechanisms of such stem cell aging are poorly understood, and it is not clear to what extent stem cell aging contributes to tissue or organ aging. Here we show in female Drosophila that germline stem cell (GSC) division rate progressively declines with age, which is accompanied by reduced decapentaplegic (dpp) niche signaling pathway activation within GSCs. Egg production also rapidly declines with age, which is accompanied by both decreased stem cell division and increased incidence of cell death of developing eggs, especially in the oldest females. Genetically increasing dpp expression delays GSC activity decline and transiently increases egg production. We conclude that age-related decline of reproduction is caused by both decreased GSC activity and increased incidence of cell death during oogenesis, while decreased GSC activity is attributed to declined signaling from the regulatory niche. We suggest that niche functional decay may be an important mechanism for stem cell aging and system failure. 相似文献
8.
Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines
下载免费PDF全文

Kazumichi M Nishida Tomoko N Okada Takeshi Kawamura Toutai Mituyama Yoshinori Kawamura Sachi Inagaki Haidong Huang Dahua Chen Tatsuhiko Kodama Haruhiko Siomi Mikiko C Siomi 《The EMBO journal》2009,28(24):3820-3831
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI‐interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl‐arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain‐containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor‐like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon‐derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality‐controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud. 相似文献
9.
10.
Watanabe T Chuma S Yamamoto Y Kuramochi-Miyagawa S Totoki Y Toyoda A Hoki Y Fujiyama A Shibata T Sado T Noce T Nakano T Nakatsuji N Lin H Sasaki H 《Developmental cell》2011,20(3):364-375
MITOPLD is a member of the phospholipase D superfamily proteins conserved among diverse species. Zucchini (Zuc), the Drosophila homolog of MITOPLD, has been implicated in primary biogenesis of Piwi-interacting RNAs (piRNAs). By contrast, MITOPLD has been shown to hydrolyze cardiolipin in the outer membrane of mitochondria to generate phosphatidic acid, which is a signaling molecule. To assess whether the mammalian MITOPLD is involved in piRNA biogenesis, we generated Mitopld mutant mice. The mice display meiotic arrest during spermatogenesis, demethylation and derepression of retrotransposons, and defects in primary piRNA biogenesis. Furthermore, in mutant germ cells, mitochondria and the components of the nuage, a perinuclear structure involved in piRNA biogenesis/function, are mislocalized to regions around the centrosome, suggesting that MITOPLD may be involved in microtubule-dependent localization of mitochondria and these proteins. Our results indicate a conserved role for MITOPLD/Zuc in the piRNA pathway and link mitochondrial membrane metabolism/signaling to small RNA biogenesis. 相似文献
11.
We have studied the role of the wingless gene in embryonic brain development of Drosophila. wingless is expressed in a large domain in the anlage of the protocerebrum and also transiently in smaller domains in the anlagen
of the deutocerebrum and tritocerebrum. Elimination of the wingless gene in null mutants has dramatic effects on the developing protocerebrum; although initially generated, approximately one
half of the protocerebrum is deleted in wingless null mutants by apoptotic cell death at late embryonic stages. Using temperature sensitive mutants, a rescue of the mutant
phenotype can be achieved by stage-specific expression of functional wingless protein during embryonic stages 9–10. This time
period correlates with that of neuroblast specification but preceeds the generation and subsequent loss of protocerebral neurons.
Ectopic wingless over-expression in gain-of-function mutants results in dramatically oversized CNS. We conclude that wingless is required for the development of the anterior protocerebral brain region in Drosophila. We propose that an important role of wingless in this part of the developing brain is the determination of neural cell fate.
Received: 7 October 1997 / Accepted: 30 December 1997 相似文献
12.
Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline 总被引:1,自引:0,他引:1
Piwi proteins and Piwi‐interacting RNAs (piRNAs) repress transposition, regulate translation, and guide epigenetic programming in the germline. Here, we show that an evolutionarily conserved Tudor and KH domain‐containing protein, Tdrkh (a.k.a. Tdrd2), is required for spermatogenesis and involved in piRNA biogenesis. Tdrkh partners with Miwi and Miwi2 via symmetrically dimethylated arginine residues in Miwi and Miwi2. Tdrkh is a mitochondrial protein often juxtaposed to pi‐bodies and piP‐bodies and is required for Tdrd1 cytoplasmic localization and Miwi2 nuclear localization. Tdrkh mutants display meiotic arrest at the zygotene stage, attenuate methylation of Line1 DNA, and upregulate Line1 RNA and protein, without inducing apoptosis. Furthermore, Tdrkh mutants have severely reduced levels of mature piRNAs but accumulate a distinct population of 1′U‐containing, 2′O‐methylated 31–37 nt RNAs that largely complement the missing mature piRNAs. Our results demonstrate that the primary piRNA biogenesis pathway involves 3′→5′ processing of 31–37 nt intermediates and that Tdrkh promotes this final step of piRNA biogenesis but not the ping‐pong cycle. These results shed light on mechanisms underlying primary piRNA biogenesis, an area in which information is conspicuously absent. 相似文献
13.
Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells. 相似文献
14.
Adaptation to environmental challenges is critical for the survival of an organism. Repression of Insulin/IGF Signaling (IIS) by stress-responsive Jun-N-terminal Kinase (JNK) signaling is emerging as a conserved mechanism that allows reallocating resources from anabolic to repair processes under stress conditions. JNK activation in Insulin-producing cells (IPCs) is sufficient to repress Insulin and Insulin-like peptide (ILP) expression in rats and flies, but the significance of this interaction for adaptive responses to stress is unclear. In this study, it is shown that JNK activity in IPCs of flies is required for oxidative stress-induced repression of the Drosophila ILP2. It is found that this repression is required for growth adaptation to heat stress as well as adult oxidative stress tolerance, and that induction of stress response genes in the periphery is in part dependent on IPC-specific JNK activity. Endocrine control of IIS by JNK in IPCs is thus critical for systemic adaptation to stress. 相似文献
15.
16.
The sex determination master switch, Sex-lethal, has been shown to regulate the mitosis of early germ cells in Drosophila melanogaster. Sex-lethal is an RNA binding protein that regulates splicing and translation of specific targets in the soma, but the germline targets are unknown. In an experiment aimed at identifying targets of Sex-lethal in early germ cells, the RNA encoded by gutfeeling, the Drosophila homolog of Ornithine Decarboxylase Antizyme, was isolated. gutfeeling interacts genetically with Sex-lethal. It is not only a target of Sex-lethal, but also appears to regulate the nuclear entry and overall levels of Sex-lethal in early germ cells. This regulation of Sex-lethal by gutfeeling appears to occur downstream of the Hedgehog signal. We also show that Hedgehog, Gutfeeling, and Sex-lethal function to regulate Cyclin B, providing a link between Sex-lethal and mitosis. 相似文献
17.
18.
19.
Chaoyi Li Lijuan Kan Yan Chen Xiudeng Zheng Weini Li Wenxin Zhang Lei Cao Xiaohui Lin Shanming Ji Shoujun Huang Guoqiang Zhang Xiaohui Liu Yi Tao Shian Wu Dahua Chen 《Cell research》2015,25(10):1152-1170
Many stem cell populations are tightly regulated by their local microenvironment (niche), which comprises distinct types of stromal cells. However, little is known about mechanisms by which niche subgroups coordinately determine the stem cell fate. Here we identify that Yki, the key Hippo pathway component, is essential for escort cell (EC) function in promoting germline differentiation in Drosophila ovary. We found that Hedgehog (Hh) signals emanating primarily from cap cells support the function of ECs, where Cubitus interruptus (Ci), the Hh signaling effector, acts to inhibit Hippo kinase cascade activity. Mechanistically, we found that Ci competitively interacts with Hpo and impairs the Hpo-Wts signaling complex formation, thereby promoting Yki nuclear localization. The actions of Ci ensure effective Yki signaling to antagonize Sd/Tgi/Vg-mediated default repression in ECs. This study uncovers a mechanism explaining how subgroups of niche cells coordinate to determine the stem cell fate via Hh-Hippo signaling crosstalk, and enhances our understanding of mechanistic regulations of the oncogenic Yki/YAP signaling. 相似文献
20.
In an effort to isolate genes required for heart development and to further our understanding of cardiac specification at the molecular level, we screened PlacZ enhancer trap lines for expression in the Drosophila heart. One of the lines generated in this screen, designated B2-2-15, was particularly interesting because of its early pattern of expression in cardiac precursor cells, which is dependent on the homeobox gene tinman, a key determinant of heart development in Drosophila. We isolated and characterized a gene in the vicinity of B2-2-15 that exhibits an identical expression pattern than the reporter gene of the enhancer trap. The product of his gene, apontic (apt; see also Gellon et al., 1997), does not appear to have any homology with known genes. apt mutant embryos show distinct abnormalities in heart morphology as early as mid-embryonic stages when the heat tube assembles, in that segments of heart cells (those of myocardial and pericardial identity) are often missing. Most strikingly, however, apt mutant embryos or larvae only develop a much reduced heart rate, perhaps because of defects in the assembly of an intact heart tube and/or because of defects in the function or physiological control of the myocardial cells, which normally mediate heart contractions. These cardiac defects may be the cause of death of these mutants during late embryonic or early larval stages. 相似文献