首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Kluyveromyces marxianus grown on a glucose-containing synthetic medium four different sugar transporters have been identified. In cells, harvested during the exponential phase, only the constitutive glucose/fructose carrier, probed with 6-deoxy-D-glucose or sorbose, appeared to be active. In cells from the stationary phase three proton symporters can be active, recognizing 6-deoxyglucose (a glucose/galactose carrier), sorbose (a fructose carrier) and galactosides (lactose carrier), respectively. These symporters appeared to be sensitive to catabolite inactivation. This process is induced by incubating cells in the presence of glucose, fructose or mannose. Catabolite inactivation was not influenced by the inhibitor of protein synthesis, anisomycin. Derepression of the proton/sorbose and the proton/galactoside symporters proceeded readily when cells were incubated in a medium without glucose. Activation of the proton/galactose symporter needed, in addition, the presence of specific molecules (inducers) in the medium. The activation of each of these active transport systems was inhibited by anisomycin, showing the involvement of protein synthesis.  相似文献   

2.
Regulation of transport of D-glucose and D-fructose was studied in Kluyveromyces marxianus grown in continuous culture. Both substrates could be transported by at least two different transport systems, low-affinity transport and high-affinity proton-sugar symport. The low-affinity transporter, specific for both glucose and fructose, was constitutively present and was apparently not regulated by carbon catabolite repression. Regulation of the activity of the glucose- and fructose-specific proton symport systems appeared to proceed mainly through catabolite repression. Activation of symport did not need the presence of specific inductor molecules in the medium. Nevertheless, the capacities of the proton-sugar symporters varied in cells grown on a wide variety of carbon sources. The possibility that the control of proton symport activity is related to the presence of specific intracellular metabolites is discussed.  相似文献   

3.
Abstract Under conditions of derepression the yeast Candida wickerhamii formed a high-affinity glucose proton symport. Glucose and glucose analogues induced inactivation of the glucose proton symport and its interconversion into a low-affinity facilitated diffusion system. The specific inactivation rate increased with the concentration of the inactivating sugar and did not obey saturation kinetics. This dependence was still pronounced at sugar concentrations far above saturation of the glucose transport systems. This suggested that the inactivation and interconversion mechanism was triggered by interaction of the inactivating sugar with receptor sites located on the cell surface.  相似文献   

4.
A novel gene, FSY1, encoding a permease involved in active fructose uptake by a proton symport mechanism in the type strain of Saccharomyces carlsbergensis has been isolated. Fsy1p is only distantly related to the Hxt proteins that mediate facilitated diffusion of glucose and fructose in Saccharomyces cerevisiae and related species.  相似文献   

5.
Summary Fructose utilization in laboratory-scale sucrose adjunct brewers wort fermentations, using the brewing strainS. cerevisiae IGC 4261, is predicted by a mathematical model based on the kinetic parameters of the membrane transport proteins which affect fructose uptake into the cell. These include biphasic fructose transport via a proton symport and the constitutive hexose facilitated diffusion system, plus the competitive inhibitory effect that glucose has on this latter component. Also the non-competitive inhibitory effects of a) maltose on fructose uptake via its proton symport and b) ethanol on biphasic fructose transport are incorporated within the model, as well as the inoculum size.  相似文献   

6.
Results of fructose proton symport and nDNA/nDNA reassociation measurements in 58 wine and beer yeast strains belonging to the Saccharomyces sensu stricto group are presented.
All strains were identified earlier using conventional physiological tests. Based on their fructose proton symport activity, four strains were found which did not correlate with their original classification, suggesting incorrect identification. The nDNA/nDNA reassociation measurements supported the results of the active fructose proton symport investigation.  相似文献   

7.
Preincubation of yeast cells with glucose or other metabolic energy sources increased the rate of sorbose efflux 2- or 3-fold. Stimulated rates persisted for several h, decreasing slowly. They were approximately halved by including Km concentrations of highly competitive sugars such as deoxyglucose, glucose, fructose and mannose in sorbose efflux suspensions, and were greatly slowed at reduced temperatures. Inhibitors of energy metabolism blocked the rate stimulation, as did cycloheximide; added nitrogen sources increased the rate additionally. The rate of sorbose uptake was also increased, whereas that of dimethylsulfoxide, which enters the cell by simple diffusion, was not changed. Transport of arabinose and fucose also occurred at increased rates. The data indicate a change in the sorbose transport system rather than in membrane permeability. The change, apparently the synthesis of a transport system component, requires metabolic energy and involves protein synthesis.  相似文献   

8.
The occurrence of proton symport mechanisms for the transport of glucose, galactose, fructose, raffinose and sucrose in 21 yeast strains representing the species of the genusKluyveromyces was surveyed. Proton symport of one or more sugars occurred in 57% of the strains. Similarly, all the sugars investigated were transported by symports by several strains. Symport systems for non-utilisable sugars were rare. Starvation of cells frequently resulted in the appearance of a symport absent in non-starved glucose-grown cells, indicating that repression of proton symports by glucose and subsequent derepression by starvation is a general phenomenon in members ofKluyveromyces. The addition of a sugar to cell suspensions resulted in acidification in 80% of cases, indicating the activity of a membrane-bound ATPase. Acidification was also observed with a number of sugars that cannot be utilised by the particular species. Interesting correlations between the number of proton symports and the abundance of other phenotypic characteristics in members of the genus emerged. Most members of the infertile group of species showing an increase in the number of small chromosomes, inability to produce well-developed pseudomycelium, linoleic and linolenic acid, a decrease in the number of carbon compounds utilised and inability to utilise ethylamine also had no proton symports, whereas most members of the interfertile species produced one or more proton symports. It was concluded that the distribution of the number of proton symports amongstKluyveromyces species coincided with that of other positive characteristics and may therefore be of taxonomic value.  相似文献   

9.
Glucose-repressed cells of the yeast Pichia ohmeri IGC 2879 transported glucose by facilitated diffusion. Derepression led to the formation of a glucose/proton symport and the simultaneous reduction of the facilitated diffusion capacity by about 70%. Cycloheximide prevented this interconversion indicating its dependence on de novo protein synthesis (proteosynthetic interconversion). In buffer with 2% glucose the glucose/proton symport suffered irreversible inactivation while the facilitated diffusion system was simultaneously restored. This reverse interconversion process did not require de novo protein synthesis as indicated by its lack of sensitivity to cycloheximide (degradative interconversion). Thus the glucose/proton symport system appeared to consist of about 70% of the facilitated diffusion proteins turned silent through association with additional protein(s) the latter being sensitive to glucose-induced repression and glucose-induced inactivation.  相似文献   

10.
Brockman, II. E., and F. J. de Serres. (Oak Ridge Natl. Lab., Oak Ridge, Tenn.) “Sorbose toxicity” in Neurospora . Amer. Jour. Bot. 50(7): 709–714. Illus. 1963.—The effect of “sorbose toxicity” on Neurospora conidia or ascospores was compared in sorbose-fructose-glucose (S-F-G) and sorbose-sucrose (S-S) media. Many frequently encountered and difficultly controlled experimental variables may strongly affect viability in S-S media but are essentially without effect in S-F-G media. The viabilities of different mutant strains are affected to varying extents by autoclave exposure time of the S-S media but not of the S-F-G media. Ascospores are more sensitive than conidia to “sorbose kill” in S-S media. An over plating method described by New meyer (1954) for increasing ascospore “viability” is without effect when sucrose is replaced with fructose and glucose. In all experiments in which sorbose was added to induce colonial growth, “sorbose toxicity” or “sorbose kill” was eliminated or minimized by replacing sucrose with a mixture of fructose and glucose as the carbon source for Neurospora media.  相似文献   

11.
J J Ye  J W Neal  X Cui  J Reizer    M H Saier  Jr 《Journal of bacteriology》1994,176(12):3484-3492
Lactobacillus brevis takes up glucose and the nonmetabolizable glucose analog 2-deoxyglucose (2DG), as well as lactose and the nonmetabolizable lactose analoge thiomethyl beta-galactoside (TMG), via proton symport. Our earlier studies showed that TMG, previously accumulated in L. brevis cells via the lactose:H+ symporter, rapidly effluxes from L. brevis cells or vesicles upon addition of glucose and that glucose inhibits further accumulation of TMG. This regulation was shown to be mediated by a metabolite-activated protein kinase that phosphorylase serine 46 in the HPr protein. We have now analyzed the regulation of 2DG uptake and efflux and compared it with that of TMG. Uptake of 2DG was dependent on an energy source, effectively provided by intravesicular ATP or by extravesicular arginine which provides ATP via an ATP-generating system involving the arginine deiminase pathway. 2DG uptake into these vesicles was not inhibited, and preaccumulated 2DG did not efflux from them upon electroporation of fructose 1,6-diphosphate or gluconate 6-phosphate into the vesicles. Intravesicular but not extravesicular wild-type or H15A mutant HPr of Bacillus subtilis promoted inhibition (53 and 46%, respectively) of the permease in the presence of these metabolites. Counterflow experiments indicated that inhibition of 2DG uptake is due to the partial uncoupling of proton symport from sugar transport. Intravesicular S46A mutant HPr could not promote regulation of glucose permease activity when electroporated into the vesicles with or without the phosphorylated metabolites, but the S46D mutant protein promoted regulation, even in the absence of a metabolite. The Vmax but not the Km values for both TMG and 2DG uptake were affected. Uptake of the natural, metabolizable substrates of the lactose, glucose, mannose, and ribose permeases was inhibited by wild-type HPr in the presence of fructose 1,6-diphosphate or by S46D mutant HPr. These results establish that HPr serine phosphorylation by the ATP-dependent, metabolite-activated HPr kinase regulates glucose and lactose permease activities in L. brevis and suggest that other permeases may also be subject to this mode of regulation.  相似文献   

12.
Twelve lactose-assimilating strains of the yeast species Kluyveromyces marxianus and its varieties marxianus, lactis and bulgaricus were studied with respect to transport mechanisms for lactose, glucose and galactose, fermentation of these sugars and the occurrence of extracellular lactose hydrolysis. The strains fell into three groups. Group I (two strains): Fermentation of lactose, glucose and galactose, extracellular lactose hydrolysis, apparent facilitated diffusion of glucose and galactose; Group II (two strains): Lactose not fermented, glucose and galactose fermented and transported by an apparent proton symport, extracellular hydrolysis of lactose present (one strain) or questionable; Group III (eight strains): Lactose, glucose and galactose fermented, lactose transported by an apparent proton symport mechanism, extracellular hydrolysis of lactose and transport modes for glucose and galactose variable.  相似文献   

13.
Glucose transport by mixed ruminal bacteria from a cow.   总被引:1,自引:1,他引:0       下载免费PDF全文
H Kajikawa  M Amari    S Masaki 《Applied microbiology》1997,63(5):1847-1851
The glucose transport of mixed ruminal bacteria harvested from a holstein cow fed 5.0 kg of Italian ryegrass and 1.5 kg of flaked corn a day was investigated. The Eadie-Hofstee plot characterized two transport systems: a high-affinity, low-velocity system and a low-affinity, high-velocity system. The former system (K(m) = 16 microM; Vmax = 2.2 nmol/min/mg of protein) is considered dominant under this feeding condition based on the glucose concentration in the rumen (< 1 mM). In light of the facts that the protonophore SF6847 and the lipophilic triphenylmethyl phosphonium ion had no effect on the high-affinity system and an artificially generated proton gradient and electrical potential across the cell membrane did not increase glucose transport, a proton motive force is not be involved in the system. On the other hand, from the facts that chlorhexidine inhibited about 90% of the high-affinity system while iodoacetate showed no significant effect, and a high phosphoenolpyruvate-dependent phosphorylation of glucose was actually shown, the phosphoenolpyruvate-dependent phosphotransferase system is considered the main system in the high-affinity system. Moreover, as shown by the facts that harmaline inhibited about 30% of the high-affinity system and the artificially generated sodium gradient across the cell membrane significantly stimulated glucose transport, this system also includes sodium symport to some degree. The high-affinity system was sensitive to a decrease in pH (< 6.5) and was inhibited by the presence of sucrose, mannose, and fructose.  相似文献   

14.
Summary The utilization of some mono- and oligosaccharides by the members of Choanephoraceae has been studied in detail. The filtrate was analysed by using circular paper chromatography. Amongst the seven monosaccharides tested, viz., glucose, galactose, fructose, mannose, xylose, sorbose and rhamnose, the first five were completely utilized within the specified period, while sorbose and rhamnose remained in the medium throughout the incubation period. A mixture of glucose, galactose and fructose was found to support better growth of all the present species, than that when these sugars were supplied singly. Out of the four oligosaccharides tested, only maltose could be hydrolysed, and it was completely consumed within the specified period. The other three oligosaccharides, viz., sucrose, lactose and raffinose were not hydrolysed and they remained in the medium throughout the incubation period.  相似文献   

15.
Several carbohydrates were tested for their ability to stimulate last instar Heliothis zea larvae to bite and, as a measure of nutritional value, for their ability to prolong the lives of H. zea larvae in the absence of a protein. Sucrose, fructose and glucose strongly stimulated biting. Maltose and sorbose were weakly stimulating, and mannitol, rhamnose, galactose, and lactose did not stimulate biting at the concentrations tested. Sucrose, fructose, mannitol, maltose, glucose, galactose, corn starch, and lactose all prolonged life, but larval longevity varied among these carbohydrates. Rhamnose did not prolong life, nor did sorbose, which was slightly toxic. When fructose, glucose, or mannitol replaced sucrose in a nutritionally complete defined diet containing protein, utilization efficiencies were minimally affected. When sorbose was substituted for sucrose, it did not cause mortality, but it did depress the efficiency of utilization significantly below that of a control diet that lacked any carbohydrate except cellulose powder.
Résumé L'étude a porté sur l'apitude de plusieurs carbohydrates à stimuler les morsures des chenilles du dernier stade de H. zea et à prolonger leur vie, (mesure de la valeur nutritive), en absence de protéines. Sucrose, fructose et glucose stimulent fortement les morsures. Maltose et sorbose ont été faiblement stimulants, et rhamnose, galactose, lactose et mannitol n'ont pas stimulé aux concentrations examinées. Sucrose, fructose, mannitol, maltose, glucose, galactose, amidon de maïs et lactose ont tous prolongé la vie, mais d'une façon différente suivant les carbohydrates.La rhamnose n'a pas prolongé la vie, tout comme le sorbose, qui s'est révélé légèrement toxique. Quand le fructose, le glucose ou le mannitol ont remplacé le sucrose dans un régime complètement défini contenant des protéines, la perturbation de l'efficacité d'utilisation a été minimale, mais la substitution du sorbose par le sucrose, bien qu'elle n'ait pas provoqué de mortalité, a donné une efficacité d'utilisation significativement plus faible qu'un témoin négatif ayant perdu tous les carbohydrates, à l'exception de poudre de cellulose.
  相似文献   

16.
Saccharomyces carlsbergensis cells accumulated Mn2+ (or Mg2+) ions in the presence of glucose, fructose, or mannose, but not of deoxyglucose, 3-O-methylglucose, and sorbose. Accumulation of one equivalent of Mn/2+ was coupled with the efflux of two equivalents of K+ from the cells. Mg/2+ did not exit during Mn2+ uptake. Preliminary treatment of cells with various proton conductors or glucose led to the loss of K+ and to the proportional inhibition of Mn2+ uptake. Polyene antibiotic candicidin together with glucose elicited rapid efflux of K+ and completely inhibited Mn2+ accumulation. Exogenous K+ (more than 1 mM), 100 microM N,N'-dicyclohexylcarbodiimide, and 30 mM sodium arsenate inhibited both K+ efflux and Mn2+ influx. K+ efflux from S. carlsbergensis cells affected the vacuolar pool of K+ both during the accumulation of Mn2+ or Mg2+ and during glucose uptake.  相似文献   

17.
Xylose-utilising yeasts were screened to identify strains with high xylose transport capacity. Among the fastest-growing strains in xylose medium, Candida intermedia PYCC 4715 showed the highest xylose transport capacity. Maximal specific growth rate was the same in glucose and xylose media (mu(max)=0.5 h-1, 30 degrees C). Xylose transport showed biphasic kinetics when cells were grown in either xylose- or glucose-limited culture. The high-affinity xylose/proton symport system (Km = 0.2 mM, Vmax = 7.5 mmol h-1 g-1) was more repressed by glucose than by xylose. The less specific low-affinity transport system (K = 50 mM, Vmax = 11 mmol h-1 g-1) appeared to operate through a facilitated-diffusion mechanism and was expressed constitutively. Inhibition experiments showed that glucose is a substrate of both xylose transport systems.  相似文献   

18.
Summary Utilization of 8 monosaccharides, viz., glucose, fructose, galactose, mannose, sorbose, arabinose, xylose and rhamnose, by some plant pathogenic isolates ofColletotrichum gloeosphorioides andC. dematium has been studied with the help of paper chromatography. Among hexoses, the rate of utilization of glucose, fructose and mannose was fast, whereas, that of galactose was comparatively slow. The rate of assimilation of sorbose was very slow at early stages of incubation, although at later stages this rate showed marked enhancement. The pentoses were utilized readily. The dry weight of mycelial mats showed an increase up to the end of final incubation period (15 days), on sugars which were slowly assimilated. In cases where the sugars were consumed up rapidly, the dry weight at later stages of incubation either became nearly stationary or recorded slight fall.  相似文献   

19.
The heterofermentative lactic acid bacterium Lactobacillus brevis transports galactose and the nonmetabolizable galactose analogue thiomethyl-beta-galactoside (TMG) by a permease-catalyzed sugar:H(+) symport mechanism. Addition of glucose to L. brevis cells loaded with [(14)C]TMG promotes efflux and prevents accumulation of the galactoside, probably by converting the proton symporter into a uniporter. Such a process manifests itself physiologically in phenomena termed inducer expulsion and exclusion. Previous evidence suggested a direct allosteric mechanism whereby the phosphocarrier protein, HPr, phosphorylated at serine-46 [HPr(Ser-P)], binds to the galactose:H(+) symporter to uncouple sugar transport from proton symport. To elucidate the molecular mechanism of inducer control in L. brevis, we have cloned the genes encoding the HPr(Ser) kinase, HPr, enzyme I, and the galactose:H(+) symporter. The sequences of these genes were determined, and the relevant phylogenetic trees are presented. Mutant HPr derivatives in which the regulatory serine was changed to either alanine or aspartate were constructed. The cloned galP gene was integrated into the chromosome of Bacillus subtilis, and synthesis of the mutant HPr proteins in this organism was shown to promote regulation of GalP, as expected for a direct allosteric mechanism. We have thus reconstituted inducer control in an organism that does not otherwise exhibit this phenomenon. These results are consistent with the conclusion that inducer exclusion and expulsion in L. brevis operates via a multicomponent signal transduction mechanism wherein the presence of glycolytic intermediates such as fructose 1,6-bisphosphate (the intracellular effector), derived from exogenous glucose (the extracellular effector), activates HPr(Ser) kinase (the sensor) to phosphorylate HPr on Ser-46 (the messenger), which binds to the galactose:H(+) symporter (the target), resulting in uncoupling of sugar transport from proton symport (the response). This cascade allows bacteria to quickly respond to changes in external sugar concentrations. Understanding the molecular mechanism of inducer control advances our knowledge of the link between metabolic and transport processes in bacteria.  相似文献   

20.
Summary A sorbose-resistant double mutant sor r A-10/sor r C-17 produces larger colonies in sorbose containing test-medium than the respective single mutants; wildtype colonies remain very small. Resistance of the single mutants was shown to be connected with a decreased rate of sorbose-uptake into their conidia; however, sorbose uptake of the double mutant had not been measured. To check, whether the improved performance of the double mutant on test medium is correlated with a further decrease of sorbose uptake in this strain, studies on the uptake of fructose, sorbose and deoxyglucose by ungerminated conidia of the two single mutants, the double mutant and the wildtype were conducted, using C14-marked sugars, the millipore filter technique, and conidia either untreated or pretreated with 1% sorbose for 4 hours.If sorbose uptake is referred to that of fructose as basis of calculations, as in the earlier studies, the sorbose uptake by cells of the double mutant is smaller than that of both single mutants for conidia not pretreated with sorbose (Fig. 7a). However, for conidia pretreated with sorbose, this correlation does not hold. Rather, cells of the double mutant take up less sorbose than those of the C-mutant, but as much or slightly more than those of the A-mutant (Fig. 7b). If sorbose uptake is referred to that of deoxyglucose for an independent point of reference, cells of the double mutant take up less sorbose than those of the C-mutant, but much more than those of the A-mutant. This holds for untreated and sorbose pretreated cells (Fig. 5 a and b). These data rule out a correlation between colony size and transport defect for at least one of the strains used here, i.e. the C-mutant.The following data suggest a new interpretation: In contrast to the earlier findings with germinated conidia, ungerminated untreated cells of the C-mutant take up much more fructose and sorbose than those of the wildtype (Fig. 3 a and 1a). The uptake of fructose by cells of the C-mutant can not be improved by sorbose pretreatement (Fig. 3 b), but in both wildtype and A-mutant it is increased (Figs. 1b and 2b). Uptake of deoxyglucose was nearly equal for all three strains either untreated or pretreated. Untreated cells of the A-mutant take up as much sorbose as those of the wildtype (Figs. 2 a and 1 a). On pretreatment their sorbose uptake remains nearly constant (Figs. 2b), in contrast to wildtype cells, where it increases drastically and without an increase of fructose uptake by an equivalent amount (Fig. 1b).The new interpretation suggests that gene C is of the regulator type. Mutation of it in the C-strain used here has lead to the simultaneous de-repression of a system for fructose and sorbose uptake. Deoxyglucose uptake is not served by this system. Gene A is a structural gene, harbouring the information for the inducible synthesis of a carrier or permease specifically engaged in sorbose uptake. It is not under the controll of gene C.This interpretation is supported by results on untreated cells of the double mutant. However, fructose uptake of such cells is roughly equal to that of C-mutant cells (Fig. 6a) and sorbose uptake is less (Fig. 5a). Hence, a secondary effect of the A-gene, i.e. on the amount of de-repression of sorbose uptake by mutation in gene C, is indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号