首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave, Wyoming, were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of white filament bundles, with low C:N ratios (3.5-5.4) and high sulfur content (16.1-51.2%). White filament bundles and two other mat morphotypes had organic carbon isotope values (mean delta13C=-34.7 per thousand, 1sigma=3.6) consistent with chemolithoautotrophic carbon fixation from a dissolved inorganic carbon reservoir (cave water, mean delta13C=-7.4 per thousand for two springs, n=8). Bacterial diversity was low overall in the clone libraries, and the most abundant taxonomic group was affiliated with the "Epsilonproteobacteria" (68%), with other bacterial sequences affiliated with Gammaproteobacteria (12.2%), Betaproteobacteria (11.7%), Deltaproteobacteria (0.8%), and the Acidobacterium (5.6%) and Bacteriodetes/Chlorobi (1.7%) divisions. Six distinct epsilonproteobacterial taxonomic groups were identified from the microbial mats. Epsilonproteobacterial and bacterial group abundances and community structure shifted from the spring orifices downstream, corresponding to changes in dissolved sulfide and oxygen concentrations and metabolic requirements of certain bacterial groups. Most of the clone sequences for epsilonproteobacterial groups were retrieved from areas with high sulfide and low oxygen concentrations, whereas Thiothrix spp. and Thiobacillus spp. had higher retrieved clone abundances where conditions of low sulfide and high oxygen concentrations were measured. Genetic and metabolic diversity among the "Epsilonproteobacteria" maximizes overall cave ecosystem function, and these organisms play a significant role in providing chemolithoautotrophic energy to the otherwise nutrient-poor cave habitat. Our results demonstrate that sulfur cycling supports subsurface ecosystems through chemolithoautotrophy and expand the evolutionary and ecological views of "Epsilonproteobacteria" in terrestrial habitats.  相似文献   

2.
The sulfur chemical speciation in extracellular and intracellular sulfur globules of Acidithiobacillus ferrooxidans and Acidithiobacillus caldus were investigated with an integrated approach including scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy and sulfur K-edge X-ray absorption near edge structure spectroscopy (XANES). The results indicated that both strains can accumulate extracellular sulfur globules when grown on thiosulfate, and the major sulfur chemical speciation of which were S8 for A. ferrooxidans and mixture of ring sulfur and polythionate for A. caldus, respectively. In contrast, A. ferrooxidans can accumulate both linear sulfur and S8 internally when grown with sulfur powder and thiosulfate, whereas A. caldus did not accumulate intracellular sulfur globules. In addition, the fitted results of sulfur K-edge XANES spectra indicated that the reduced glutathione (containing thiols groups) were involved in sulfur bio-oxidation of both strains and the tetrathionate were the intermediate products during thiosulfate metabolism by two strains.  相似文献   

3.
The ultramafic-hosted Logatchev hydrothermal field (LHF) is characterized by vent fluids, which are enriched in dissolved hydrogen and methane compared with fluids from basalt-hosted systems. Thick sediment layers in LHF are partly covered by characteristic white mats. In this study, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper sediment layer. Microprofiles revealed an intensive hydrogen sulfide flux from deeper sediment layers. Fluorescence in situ hybridization showed that filamentous and vibrioid, Arcobacter-related Epsilonproteobacteria dominated the overlying mats. This is in contrast to sulfidic sediments in basalt-hosted fields where mats of similar appearance are composed of large sulfur-oxidizing Gammaproteobacteria. Epsilonproteobacteria (7-21%) and Deltaproteobacteria (20-21%) were highly abundant in the surface sediment layer. The physiology of the closest cultivated relatives, revealed by comparative 16S rRNA sequence analysis, was characterized by the capability to metabolize sulfur components. High sulfate reduction rates as well as sulfide depleted in (34)S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat-covered surface sediments. Our data indicate that in conductively heated surface sediments microbial sulfur cycling is the driving force for bacterial biomass production although ultramafic-hosted systems are characterized by fluids with high levels of dissolved methane and hydrogen.  相似文献   

4.
Hydrogen sulfide-rich groundwater discharges from springs into Lower Kane Cave, Wyoming, where microbial mats dominated by filamentous morphotypes are found. The full-cycle rRNA approach, including 16S rRNA gene retrieval and fluorescence in situ hybridization (FISH), was used to identify these filaments. The majority of the obtained 16S rRNA gene clones from the mats were affiliated with the "Epsilonproteobacteria" and formed two distinct clusters, designated LKC group I and LKC group II, within this class. Group I was closely related to uncultured environmental clones from petroleum-contaminated groundwater, sulfidic springs, and sulfidic caves (97 to 99% sequence similarity), while group II formed a novel clade moderately related to deep-sea hydrothermal vent symbionts (90 to 94% sequence similarity). FISH with newly designed probes for both groups specifically stained filamentous bacteria within the mats. FISH-based quantification of the two filament groups in six different microbial mat samples from Lower Kane Cave showed that LKC group II dominated five of the six mat communities. This study further expands our perceptions of the diversity and geographic distribution of "Epsilonproteobacteria" in extreme environments and demonstrates their biogeochemical importance in subterranean ecosystems.  相似文献   

5.
Stable carbon and nitrogen isotopic compositions were determined for individual photosynthetic pigments isolated and purified from the saline meromictic Lake Kaiike, Japan, to investigate species-independent biogeochemical processes of photoautotrophs in the natural environment. In the anoxic monimolimnion and benthic microbial mats, the carbon isotopic compositions of BChls e and isorenieratene related to brown-coloured strains of green sulfur bacteria are substantially ( approximately 10 per thousand) depleted in (13)C relative to those found in the chemocline. In conjunction with 16S rDNA evidence reported previously, it strongly suggests that Pelodyctyon luteolum inhabited and photosynthesized in the anoxic monimolimnion and benthic microbial mats by using (13)C-depleted regenerated CO(2). By contrast, both Chl a and BChl a in the monimolimnion and microbial mats have similar isotopic compositions as they do in the chemocline, implying that the source organisms live only in the chemocline. In the chemocline, the nitrogen isotopic compositions of BChl e homologues ranges from -7.7 to-6.5 per thousand, whereas that of BChl a is -2.1 per thousand. These isotopic compositions suggest that green sulfur bacteria Chlorobium phaeovibrioides would conduct nitrogen fixation in the chemocline, whereas purple sulfur bacteria Halochromatium sp. and cyanobacteria Synechococcus sp. may assimilate nitrite.  相似文献   

6.
【背景】非致病性Epsilonproteobacteria广泛存在于全球各种不同的自然环境中,特别是一些极端生境如深海热液喷口,并且经常在微生物群落中作为优势物种被发现。然而,由于现阶段培养技术的限制,仅有为数不多的深海热液Epsilonproteobacteria被分离培养,极大限制了对其生理特征、代谢方式以及生态功能的深入认识。【目的】研究深海热液未培养Epsilonproteobacteria的进化地位、代谢潜能及其在原位生态系统中可能发挥的作用。【方法】基于宏基因组学Binning的方法,从采集自东太平洋海隆深海热液烟囱体样本中构建4个高质量的Epsilonproteobacteria基因组Bin225、Bin51、Bin54和Bin189,并进行了系统发育和代谢途径的分析。【结果】Bin189在系统发育树上相对独立于其他所有已知的Epsilonproteobacteria类群,而其余3个重构基因组都与Nitratiruptor sp. SB155-2具有较近的亲缘关系。在代谢潜能方面,所有的基因组除了都含有sqr硫氧化和rTCA碳固定途径的基因以外,也同时具有脂多糖输出转运子和多种分泌系统。Bin189显示出与其它基因组显著不同的代谢特征,其中还检测到与有机物和氨基酸转运相关的功能基因。而其他的3个基因组均具有完整的反硝化途径的功能基因,其中2个还具有Sox系统、氢化酶和鞭毛移动系统。【结论】Bin189可能是一种新发现的深海热液兼性化能营养型Epsilonproteobacteria,推测其余的3个类群能够利用硫化物和氢气作为能源进行化能自养生长。考虑到它们多样的代谢潜能,这些Epsilonproteobacteria类群很可能在深海热液微生物群落的形成发展和地球化学元素循环中发挥重要作用。  相似文献   

7.
The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO(2) -reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, >?99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n?=?382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n?=?96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense - an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable sulfur isotope ratios for elemental sulfur and sulfate in formation waters were indicative of anaerobic oxidation of sulfur compounds. Microbial desulfurization of crude oil may be an important metabolism for Epsilonproteobacteria indigenous to oil reservoirs with elevated sulfur content and may explain their prevalence in formation waters from highly biodegraded petroleum systems.  相似文献   

8.
Lower Kane Cave, Wyoming (USA), has hydrogen sulfide-bearing springs that discharge into the cave passage. The springs and cave stream harbour white filamentous microbial mats dominated by Epsilonproteobacteria. Recently, novel 16S rRNA gene sequences from the phylum Acidobacteria, subgroup 7, were found in these cave mats. Although Acidobacteria are ubiquitously distributed in many terrestrial and marine habitats, little is known about their ecophysiology. To investigate this group in Lower Kane Cave in more detail, a full-cycle rRNA approach was applied based on 16S and 23S rRNA gene clone libraries and the application of novel probes for fluorescence in situ hybridization. The 16S and 23S rRNA gene clone libraries yielded seven and six novel acidobacterial operational taxonomic units (OTUs) respectively. The majority of the OTUs were affiliated with subgroups 7 and 8. One OTU was affiliated with subgroup 6, and one OTU could not be assigned to any of the present acidobacterial subgroups. Fluorescence in situ hybridization distinguished two morphologically distinct, rod-shaped cells of the acidobacterial subgroups 7 and 8. Although the ecophysiology of Acidobacteria from Lower Kane Cave will not be fully resolved until cultures are obtained, acidobacterial cells were always associated with the potentially chemolithoautotrophic epsilon- or gammaproteobacterial filaments, suggesting perhaps a lifestyle based on heterotrophy or chemoorganotrophy.  相似文献   

9.
Microbial communities inhabiting deep-sea cold seep sediments at the northeastern Japan Sea were characterized by molecular phylogenetic and chemical analyses. White patchy microbial mats were observed along the fault offshore the Hokkaido Island and sediment samples were collected from two stations at the southern foot of the Shiribeshi seamount (M1 site at a depth of 2,961 m on the active fault) and off the Motta Cape site (M2 site at a depth of 3,064 m off the active fault). The phylogenetic and terminal-restriction fragment polymorphism analyses of PCR-amplified 16S rRNA genes revealed that microbial community structures were different between two sampling stations. The members of ANME-2 archaea and diverse bacterial components including sulfate reducers within Deltaproteobacteria were detected from M1 site, indicating the occurrence of biologically mediated anaerobic oxidation of methane, while microbial community at M2 site was predominantly composed of members of Marine Crenarchaeota group I, sulfate reducers of Deltaproteobacteria, and sulfur oxidizers of Epsilonproteobacteria. Chemical analyses of seawater above microbial mats suggested that concentrations of sulfate and methane at M1 site were largely decreased relative to those at M2 site and carbon isotopic composition of methane at M1 site shifted heavier (13C-enriched), the results of which are consistent with molecular analyses. These results suggest that the mat microbial communities in deep-sea cold seep sediments at the northeastern Japan Sea are significantly responsible for sulfur and carbon circulations and the geological activity associated with plate movements serves unique microbial habitats in deep-sea environments.  相似文献   

10.
Microbial sulfate reduction (MSR) is thought to have operated very early on Earth and is often invoked to explain the occurrence of sedimentary sulfides in the rock record. Sedimentary sulfides can also form from sulfides produced abiotically during late diagenesis or metamorphism. As both biotic and abiotic processes contribute to the bulk of sedimentary sulfides, tracing back the original microbial signature from the earliest Earth record is challenging. We present in situ sulfur isotope data from nanopyrites occurring in carbonaceous remains lining the domical shape of stromatolite knobs of the 2.7‐Gyr‐old Tumbiana Formation (Western Australia). The analyzed nanopyrites show a large range of δ34S values of about 84‰ (from ?33.7‰ to +50.4‰). The recognition that a large δ34S range of 80‰ is found in individual carbonaceous‐rich layers support the interpretation that the nanopyrites were formed in microbial mats through MSR by a Rayleigh distillation process during early diagenesis. An active microbial cycling of sulfur during formation of the stromatolite may have facilitated the mixing of different sulfur pools (atmospheric and hydrothermal) and explain the weak mass independent signature (MIF‐S) recorded in the Tumbiana Formation. These results confirm that MSR participated actively to the biogeochemical cycling of sulfur during the Neoarchean and support previous models suggesting anaerobic oxidation of methane using sulfate in the Tumbiana environment.  相似文献   

11.
Elemental sulfur bio-oxidation by the typical acidophilic sulfur-oxidizing microbe Acidithiobacillus ferrooxidans was investigated by using the technique of sulfur K-edge XANES spectroscopy. Our results showed that the majority of elemental sulfur altered by A. ferrooxidans was dissolved into the organic phase containing carbon disulfide, while a part of it floated. The fitted results of sulfur K-edge XANES spectrum of the floated sulfur showed that the floating part of the elemental sulfur powder was converted to polymeric sulfur and the relative concentration of sulfur in cyclo-octasulfur S8 and polymeric sulfur was 37.2 and 62.8%, respectively. It seems that the cyclo-octasulfur is converted to the polymeric sulfur and this appears to be necessary for oxidation of elemental sulfur by A. ferrooxidans. The results have important implications for our understanding of the mechanisms for bio-oxidation of elemental sulfur.  相似文献   

12.
The potential of microbial mats to develop sulfide-oxidizing biofims was explored. A bioreactor specially designed for the treatment of sulfide-containing effluents was inoculated with a microbial-mat sample, and a complex microbial biofilm with sulfide-oxidation activity developed. The microbial composition of the biofilm was studied by pigment, microscopy, and 16S rRNA gene analyses. Purple sulfur bacteria and diatoms were observed by microscopy, chlorophyll a and bacteriochlorophyll a were detected in the pigment analysis, and high genetic diversity was found in the 16S rRNA gene library. Specialized anaerobic sulfur oxidizers (i.e., phototrophic purple and green sulfur bacteria) dominated the library. Aerobic phototrophs (diatoms) also developed and the oxygen produced allowed the growth of aerobic sulfide oxidizers, such as Thiomicrospira-like spp. Cyanobacteria, which are significant organisms in natural microbial mats, did not develop in the reactor but unexpected uncultured members from the Epsilonproteobacteria developed profusely. Moreover, a variety of more minor organisms, such as members of the Cytophaga-Flavobacterium-Bacteroides (CFB) and purple non-sulfur bacteria (Roseospirillum sp.), were also present. The results showed that a complex community with high genetic and metabolic diversity, including many uncultured organisms, can develop in a laboratory-scale reactor.  相似文献   

13.
Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and/or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distributions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomicrobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. Overall, the results are consistent with the presence of distinct microbial niches and suggest zonation of sulfur cycle processes in this stratified system.  相似文献   

14.
Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan, were characterized using 16S rRNA gene sequencing and lipid biomarker analysis. Characterization of 16S rRNA gene isolated from these samples suggested a predominance of bacterial phylotypes related to Gammaproteobacteria (57-64%) and Deltaproteobacteria (27-29%). The Epsilonproteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. Significantly different archaeal phylotypes were found in Calyptogena sediment and microbial mats; the former contained only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones, including the anaerobic oxidation of methane archaeal groups ANME-2a and ANME-2c. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggested the presence of sulphate-reducing and sulphur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether lipid analysis indicated the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold-seep environments.  相似文献   

15.
A white, filamentous microbial mat at the Milano mud volcano in the Eastern Mediterranean Sea was sampled during the Medinaut cruise of the R/V Nadir in 1998. The composition of the mat community was characterized using a combination of phylogenetic and lipid biomarker methods. The mat sample was filtered through 0.2 and 5-microm filters to coarsely separate unicellular and filamentous bacteria. Analyses of 16S rRNA gene sequences amplified from the total community DNA from these fractions showed that similar archaeal populations were present in both fractions. However, the bacterial populations in the fractions differed from one another, and were more diverse than the archaeal ones. Lipid analysis showed that bacteria were the dominant members of the mat microbial community and the relatively low delta(13)C carbon isotope values of bulk bacterial lipids suggested the occurrence of methane- and sulfide-based chemo(auto)trophy. Consistent with this, the bacterial populations in the fractions were related to Alpha-, Gamma- and Epsilonproteobacteria, most of which were chemoautotrophic bacteria that utilize hydrogen sulfide (or reduced sulfur compounds) and/or methane. The most common archaeal 16S rRNA gene sequences were related to those of previously identified Archaea capable of anaerobic methane oxidation. Although the filamentous organisms observed in the mat were not conclusively identified, our results indicated that the Eastern Mediterranean deep-sea microbial mat community might be sustained on a combination of methane- and sulfide-driven chemotrophy.  相似文献   

16.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

17.
During the oxidation of sulfide and thiosulfate purple and green sulfur bacteria accumulate globules of 'elemental' sulfur. Although essential for a thorough understanding of sulfur metabolism in these organisms, the exact chemical nature of the stored sulfur is still unclear. We applied sulfur K-edge X-ray absorption near edge spectroscopy (XANES) to probe the forms of sulfur in intact cells. Comparing XANES spectra of Allochromatium vinosum, Thiocapsa roseopersicina, Marichromatium purpuratum, Halorhodospira halophila and Chlorobium vibrioforme grown photolithoautotrophically on sulfide with reference probes (fingerprint method), we found sulfur chains with the structure R-S(n)-R. Evidence for the presence of sulfur rings, polythionates and anionic polysulfides in the sulfur globules of these bacteria was not obtained.  相似文献   

18.
During recent oceanographic cruises to Pacific hydrothermal vent sites (9 degrees N and the Guaymas Basin), the rapid microbial formation of filamentous sulfur mats by a new chemoautotrophic, hydrogen sulfide-oxidizing bacterium was documented in both in situ and shipboard experiments. Observations suggest that formation of these sulfur mats may be a factor in the initial colonization of hydrothermal surfaces by macrofaunal Alvinella worms. This novel metabolic capability, previously shown to be carried out by a coastal strain in H2S continuous-flow reactors, may be an important, heretofore unconsidered, source of microbial organic matter production at deep-sea hydrothermal vents.  相似文献   

19.
A species of facultative photo-organotrophic, purple, non-sulfur bacterium was isolated from mixed-species microbial mats, characterized and examined for metal tolerance and bioremediation potential. Contributing mats were natural consortia of microbes, dominated by cyanobacteria and containing several species of bacteria arranged in a laminar structure, stabilized within a gel matrix. Constructed microbial mats were used for bioremediation of heavy metals and organic chemical pollutants. Purple, non-sulfur bacteria are characteristically found in lower strata of intact mats, but their contributing function in mats survival and function by mediating the chemical environment has not been explored. The gram-negative rod-shaped bacterium, reported here, produced a dark red culture under phototrophic conditions, reproduced by budding and formed a lamellar intracytoplasmic membrane (ICM) system parallel to cytoplasmic membrane, which contained bacteriochlorophyll a and carotenoids. This strain was found to have multiple metal resistances and to be effective in the reductive removal of Cr(VI) and the degradation of 2,4,6-trichlorophenol. Based on the results obtained from morphology, nutrient requirements, major bacteriochlorophyll content, GC content, random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) profile and 16S-rDNA phylogenetic analysis, this member of the microbial mats may be identified as a new strain of the genus Rhodopseudomonas.  相似文献   

20.
The sulfur cycle of Ebro Delta microbial mats was studied in order to determine sulfide production and sulfide consumption. Vertical distribution of two major functional groups involved in the sulfur cycle, anoxygenic phototrophic bacteria and dissimilatory sulfate-reducing bacteria (SRB), was also studied. The former reached up to 2.2×108 cfu cm–3 sediment in the purple layer, and the latter reached about 1.8×105 SRB cm–3 sediment in the black layer. From the changes in sulfide concentrations under light-dark cycles it can be inferred that the rate of H2S production was 6.2 μmol H2S cm–3 day–1 at 2.6 mm, and 7.6 μmol H2S cm–3 day–1 at 6 mm. Furthermore, sulfide consumption was also assessed, determining rates of 0.04, 0.13 and 0.005 mmol l–1 of sulfide oxidized at depths of 2.6, 3 and 6 mm, respectively. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号