首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The small chloroplast open reading frame ORF43 (ycf7) of the green unicellular alga Chlamydomonas reinhardtii is cotranscribed with the psaC gene and ORF58. While ORF58 has been found only in the chloroplast genome of C.reinhardtii, ycf7 has been conserved in land plants and its sequence suggests that its product is a hydrophobic protein with a single transmembrane alpha helix. We have disrupted ORF58 and ycf7 with the aadA expression cassette by particle-gun mediated chloroplast transformation. While the ORF58::aadA transformants are indistinguishable from wild type, photoautotrophic growth of the ycf7::aadA transformants is considerably impaired. In these mutant cells, the amount of cytochrome b6f complex is reduced to 25-50% of wild-type level in mid-exponential phase, and the rate of transmembrane electron transfer per b6f complex measured in vivo under saturating light is three to four times slower than in wild type. Under subsaturating light conditions, the rate of the electron transfer reactions within the b6f complex is reduced more strongly in the mutant than in the wild type by the proton electrochemical gradient. The ycf7 product (Ycf7) is absent in mutants deficient in cytochrome b6f complex and present in highly purified b6f complex from the wild-type strain. Ycf7-less complexes appear more fragile than wild-type complexes and selectively lose the Rieske iron-sulfur protein during purification. These observations indicate that Ycf7 is an authentic subunit of the cytochrome b6f complex, which is required for its stability, accumulation and optimal efficiency. We therefore propose to rename the ycf7 gene petL.  相似文献   

2.
The intricate assembly of photosystem I (PSI), a large multiprotein complex in the thylakoid membrane, depends on auxiliary protein factors. One of the essential assembly factors for PSI is encoded by ycf3 (hypothetical chloroplast reading frame number 3) in the chloroplast genome of algae and higher plants. To identify novel factors involved in PSI assembly, we constructed an epitope-tagged version of ycf3 from tobacco (Nicotiana tabacum) and introduced it into the tobacco chloroplast genome by genetic transformation. Immunoaffinity purification of Ycf3 complexes from the transplastomic plants identified a novel nucleus-encoded thylakoid protein, Y3IP1 (for Ycf3-interacting protein 1), that specifically interacts with the Ycf3 protein. Subsequent reverse genetics analysis of Y3IP1 function in tobacco and Arabidopsis thaliana revealed that knockdown of Y3IP1 leads to a specific deficiency in PSI but does not result in loss of Ycf3. Our data indicate that Y3IP1 represents a novel factor for PSI biogenesis that cooperates with the plastid genome-encoded Ycf3 in the assembly of stable PSI units in the thylakoid membrane.  相似文献   

3.
A small conserved open reading frame in the plastid genome, ycf9, encodes a putative membrane protein of 62 amino acids. To determine the function of this reading frame we have constructed a knockout allele for targeted disruption of ycf9. This allele was introduced into the tobacco plastid genome by biolistic transformation to replace the wild-type ycf9 allele. Homoplasmic ycf9 knockout plants displayed no phenotype under normal growth conditions. However, under low light conditions, their growth rate was significantly reduced as compared with the wild-type, due to a lowered efficiency of the light reaction of photosynthesis. We show that this phenotype is caused by the deficiency in a pigment-protein complex of the light-harvesting antenna of photosystem II and hence by a reduced efficiency of photon capture when light availability is limiting. Our results indicate that, in contrast to the current view, light-harvesting complexes do not only consist of the classical pigment-binding proteins, but may contain small structural subunits in addition. These subunits appear to be crucial architectural factors for the assembly and/or maintenance of stable light-harvesting complexes.  相似文献   

4.
The Ycf37 protein has been suggested to be involved in the biogenesis and/or stability of the cyanobacterial photosystem I (PSI). With Ycf37 specific antibodies, we analyzed the localization of Ycf37 within the thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Inspection of a sucrose gradient profile indicated that small amounts of Ycf37 co-fractionated with monomeric photosynthetic complexes, but not with trimeric PSI. Isolating 3xFLAG epitope-tagged Ycf37 by affinity-tag purification rendered several PSI subunits that specifically co-precipitated with this protein. Blue-native PAGE newly revealed two monomeric PSI complexes (PSI and PSI*) in wild-type thylakoids. The lower amount of PsaK present in PSI* may explain its higher electrophoretic mobility. PSI* was more prominent in high-light grown cells and interestingly proved absent in the Deltaycf37 mutant. PSI* appeared again when the mutant was complemented in trans with the wild-type ycf37 gene. In the Deltaycf37 mutant the amount of trimeric PSI complexes was reduced to about 70% of the wild-type level with no significant changes in photochemical activity and subunit composition of the remaining photosystems. Our results indicate that Ycf37 plays a specific role in the preservation of PSI* and the biogenesis of PSI trimers.  相似文献   

5.
6.
To analyze the function of a protein encoded by the open reading frame ssr2998 in Synechocystis sp. PCC 6803, the corresponding gene was disrupted, and the generated mutant strain was analyzed. Loss of the 7.2-kDa protein severely reduced the growth of Synechocystis, especially under high light conditions, and appeared to impair the function of the cytochrome b6 f complex. This resulted in slower electron donation to cytochrome f and photosystem 1 and, concomitantly, over-reduction of the plastoquinone pool, which in turn had an impact on the photosystem 1 to photosystem 2 stoichiometry and state transition. Furthermore, a 7.2-kDa protein, encoded by the open reading frame ssr2998, was co-isolated with the cytochrome b6 f complex from the cyanobacterium Synechocystis sp. PCC 6803. ssr2998 seems to be structurally and functionally associated with the cytochrome b6 f complex from Synechocystis, and the protein could be involved in regulation of electron transfer processes in Synechocystis sp. PCC 6803.  相似文献   

7.
Photosystem biogenesis in the thylakoid membrane is a highly complicated process that requires the coordinated assembly of nucleus-encoded and chloroplast-encoded protein subunits as well as the insertion of hundreds of cofactors, such as chromophores (chlorophylls, carotenoids) and iron-sulfur clusters. The molecular details of the assembly process and the identity and functions of the auxiliary factors involved in it are only poorly understood. In this work, we have characterized the chloroplast genome-encoded ycf4 (for hypothetical chloroplast reading frame no. 4) gene, previously shown to encode a protein involved in photosystem I (PSI) biogenesis in the unicellular green alga Chlamydomonas reinhardtii. Using stable transformation of the chloroplast genome, we have generated ycf4 knockout plants in the higher plant tobacco (Nicotiana tabacum). Although these mutants are severely affected in their photosynthetic performance, they are capable of photoautotrophic growth, demonstrating that, different from Chlamydomonas, the ycf4 gene product is not essential for photosynthesis. We further show that ycf4 knockout plants are specifically deficient in PSI accumulation. Unaltered expression of plastid-encoded PSI genes and biochemical analyses suggest a posttranslational action of the Ycf4 protein in the PSI assembly process. With increasing leaf age, the contents of Ycf4 and Y3IP1, another auxiliary factor involved in PSI assembly, decrease strongly, whereas PSI contents remain constant, suggesting that PSI is highly stable and that its biogenesis is restricted to young leaves.  相似文献   

8.
The Ycf37 protein has been suggested to be involved in the biogenesis and/or stability of the cyanobacterial photosystem I (PSI) [A. Wilde, K. Lünser, F. Ossenbühl, J. Nickelsen, T. Börner, Characterization of the cyanobacterial ycf37: mutation decreases the photosystem I content, Biochem. J. 357 (2001) 211-216]. With Ycf37 specific antibodies, we analyzed the localization of Ycf37 within the thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Inspection of a sucrose gradient profile indicated that small amounts of Ycf37 co-fractionated with monomeric photosynthetic complexes, but not with trimeric PSI. Isolating 3xFLAG epitope-tagged Ycf37 by affinity-tag purification rendered several PSI subunits that specifically co-precipitated with this protein. Blue-native PAGE newly revealed two monomeric PSI complexes (PSI and PSI*) in wild-type thylakoids. The lower amount of PsaK present in PSI* may explain its higher electrophoretic mobility. PSI* was more prominent in high-light grown cells and interestingly proved absent in the Δycf37 mutant. PSI* appeared again when the mutant was complemented in trans with the wild-type ycf37 gene. In the Δycf37 mutant the amount of trimeric PSI complexes was reduced to about 70% of the wild-type level with no significant changes in photochemical activity and subunit composition of the remaining photosystems. Our results indicate that Ycf37 plays a specific role in the preservation of PSI* and the biogenesis of PSI trimers.  相似文献   

9.
The chloroplast genomes of most higher plants contain two giant open reading frames designated ycf1 and ycf2. In tobacco, ycf1 potentially specifies a protein of 1901 amino acids. The putative gene product of the ycf2 reading frame is a protein of 2280 amino acids. In an attempt to determine the functions of ycf1 and ycf2, we have constructed several mutant alleles for targeted disruption and/or deletion of these two reading frames. The mutant alleles were introduced into the tobacco plastid genome by biolistic chloroplast transformation to replace the corresponding wild-type alleles by homologous recombination. Chloroplast transformants were obtained for all constructs and tested for their homoplastomic state. We report here that all transformed lines remained heteroplastomic even after repeated cycles of regeneration under high selective pressure. A balanced selection was observed in the presence of the antibiotic spectinomycin, resulting in maintenance of a fairly constant ratio of wild-type versus transformed genome copies. Upon removal of the antibiotic and therewith release of the selective pressure, sorting out towards the wild-type plastid genome occurred in all transplastomic lines. These findings suggest that ycf1 and ycf2 are functional genes and encode products that are essential for cell survival. The two reading frames are thus the first higher plant chloroplast genes identified as being indispensable.  相似文献   

10.
In Arabidopsis, the nuclear genes PetC and AtpD code for the Rieske protein of the cytochrome b(6)/f (cyt b(6)/f) complex and the delta-subunit of the chloroplast ATP synthase (cpATPase), respectively. Knock-out alleles for each of these loci have been identified. Greenhouse-grown petc-2 and atpd-1 mutants are seedling lethal, whereas heterotrophically propagated plants display a high-chlorophyll (Chl)-fluorescence phenotype, indicating that the products of PetC and AtpD are essential for photosynthesis. Additional effects of the mutations in axenic culture include altered leaf coloration and increased photosensitivity. Lack of the Rieske protein affects the stability of cyt b(6)/f and influences the level of other thylakoid proteins, particularly those of photosystem II. In petc-2, linear electron flow is blocked, leading to an altered redox state of both the primary quinone acceptor Q(A) in photosystem II and the reaction center Chl P700 in photosystem I. Absence of cpATPase-delta destabilizes the entire cpATPase complex, whereas residual accumulation of cyt b(6)/f and of the photosystems still allows linear electron flow. In atpd-1, the increase in non-photochemical quenching of Chl fluorescence and a higher de-epoxidation state of xanthophyll cycle pigments under low light is compatible with a slower dissipation of the transthylakoid proton gradient. Further and clear differences between the two mutations are evident when mRNA expression profiles of nucleus-encoded chloroplast proteins are considered, suggesting that the physiological states conditioned by the two mutations trigger different modes of plastid signaling and nuclear response.  相似文献   

11.
Ycf12 is a core subunit in the photosystem II complex   总被引:1,自引:0,他引:1  
The latest crystallographic model of the cyanobacterial photosystem II (PS II) core complex added one transmembrane low molecular weight (LMW) component to the previous model, suggesting the presence of an unknown transmembrane LMW component in PS II. We have investigated the polypeptide composition in highly purified intact PS II core complexes from Thermosynechococcus elongatus, the species which yielded the PS II crystallographic models described above, to identify the unknown component. Using an electrophoresis system specialized for separation of LMW hydrophobic proteins, a novel protein of approximately 5 kDa was identified as a PS II component. Its N-terminal amino acid sequence was identical to that of Ycf12. The corresponding gene is known as one of the ycf (hypothetical chloroplast reading frame) genes, ycf12, and is widely conserved in chloroplast and cyanobacterial genomes. Nonetheless, the localization and function of the gene product have never been assigned. Our finding shows, for the first time, that ycf12 is actually expressed as a component of the PS II complex in the cell, revealing that a previously unidentified transmembrane protein exists in the PS II core complex.  相似文献   

12.
Pale yellow green7-1 (pyg7-1) is a photosystem I (PSI)-deficient Arabidopsis (Arabidopsis thaliana) mutant. PSI subunits are synthesized in the mutant, but do not assemble into a stable complex. In contrast, light-harvesting antenna proteins of both photosystems accumulate in the mutant. Deletion of Pyg7 results in severely reduced growth rates, alterations in leaf coloration, and plastid ultrastructure. Pyg7 was isolated by map-based cloning and encodes a tetratrico peptide repeat protein with homology to Ycf37 from Synechocystis. The protein is localized in the chloroplast associated with thylakoid membranes and copurifies with PSI. An independent pyg7 T-DNA insertion line, pyg7-2, exhibits the same phenotype. pyg7 gene expression is light regulated. Comparison of the roles of Ycf37 in cyanobacteria and Pyg7 in higher plants suggests that the ancient protein has altered its function during evolution. Whereas the cyanobacterial protein mediates more efficient PSI accumulation, the higher plant protein is absolutely required for complex assembly or maintenance.  相似文献   

13.
14.
15.
The plastid genome sequence of the parasitic liverwort Aneura mirabilis revealed the loss of five chlororespiration (ndh) genes. Additionally, six ndh genes, subunits of photosystem I, photosystem II, and the cytochrome b6f complex were inferred to be pseudogenes. Pseudogenes of cysA, cyst, ccsA, and ycf3, an inversion of psbE and petL, were also detected. The designation of pseudogenes was made using comparisons with the distantly related liverwort Marchantia polymorpha. We sampled several populations of A. mirabilis and its photosynthetic sister groups to correlate functional gene losses with the evolution of a achlorophylly. The gene losses, pseudogenes, or the psbE-petL inversion were never detected in a photosynthetic Aneura but were detected in every population of A. mirabilis. One population of A. mirabilis revealed a unique deletion of 541 bp in the psbE-petL region; another is characterized by a unique deletion of 471 bp in the trnV(UAC)-ndhC region. The ratio of synonymous-to-nonsynonymous substitution rates (omega) was estimated for eight pseudogenes and six ORFs to detect relaxed purifying selection. A significant increase in omega for the nonphotosynthetic liverwort was detected in six pseudogenes. Relaxation purifying selection, determined by a significant increase in omega, was detected for three intact ORFs: psbA, psbM, and rbcL.  相似文献   

16.
植物光合机构的状态转换   总被引:9,自引:0,他引:9  
植物光合机构的状态转换是一种通过光系统Ⅱ的捕光天线色素蛋白复合体(LHCⅡ)的可逆磷酸化调节激发能在两个光系统间的分配来适应环境中光质等短期变化的机制.一般植物光合机构的LHCⅡ磷酸化主要受电子递体质醌和细胞色素b6f复合体氧化还原状态的调节,从而影响其在两种光系统间的移动。植物光合机构的状态转换也可以通过两种光系统相互接近导致激发能满溢来平衡两个光系统的激发能分配。外界离子浓度骤变可以引起盐藻LHCⅡ磷酸化,其调节过程与电子递体的氧化还原状态无关。绿藻的状态转换可以调节细胞内的ATP供求关系。  相似文献   

17.
The ycf9 (orf62) gene of the plastid genome encodes a 6.6-kDa protein (ORF62) of thylakoid membranes. To elucidate the role of the ORF62 protein, the coding region of the gene was disrupted with an aadA cassette, yielding mutant plants that were nearly (more than 95%) homoplasmic for ycf9 inactivation. The ycf9 mutant had no altered phenotype under standard growth conditions, but its growth rate was severely reduced under suboptimal irradiances. On the other hand, it was less susceptible to photodamage than the wild type. ycf9 inactivation resulted in a clear reduction in protein amounts of CP26, the NAD(P)H dehydrogenase complex, and the plastid terminal oxidase. Furthermore, depletion of ORF62 led to a faster flow of electrons to photosystem I without a change in the maximum electron transfer capacity of photosystem II. Despite the reduction of CP26 in the mutant thylakoids, no differences in PSII oxygen evolution rates were evident even at low light intensities. On the other hand, the ycf9 mutant presented deficiencies in the capacity for PSII-independent electron transport (ferredoxin-dependent cyclic electron transport and NAD(P)H dehydrogenase-mediated plastoquinone reduction). Altogether, it is shown that depletion of ORF62 leads to anomalies in the photosynthetic electron transfer chain and in the regulation of electron partitioning among the different routes of electron transport.  相似文献   

18.
19.
We have engineered and analyzed a chloroplast mutant of Chlamydomonas reinhardtii that lacks ycf8, the chloroplast open reading frame 8, which is highly conserved in location and predicted amino acid sequence in land plants and C.reinhardtii. The ycf8 sequence was replaced with the aadA cassette which confers resistance to spectinomycin when expressed in the chloroplast. Although the mutant is able to grow phototrophically, photosystem II function and cell growth are impaired under stress conditions such as high light intensity and diminished chloroplast protein synthesis induced by spectinomycin. Use of an antibody generated against the ycf8 product has revealed that this hydrophobic polypeptide is associated with photosystem II, based on its severely reduced levels in various photosystem II-deficient mutants and on its copurification with photosystem II. This protein, therefore, appears to be (i) a novel photosystem II subunit and (ii) required for maintaining optimal photosystem II activity under adverse growth conditions.  相似文献   

20.
The Ycf3 protein is essential for the accumulation of the photosystem I (PSI) complex and acts at a post-translational level. The sequence of Ycf3 is conserved in cyanobacteria, algae, and plants and contains three tetratrico-peptide repeats (TPR). TPRs have been shown to function as sites for protein-protein interactions. The mutations Y95A/Y96A and Y142A/W143A in the second and third TPR repeats lead to a modest decrease of PSI, but they prevent photoautotrophic growth and cause enhanced light sensitivity even though the accumulated PSI complex is fully functional. This phenotype can be reversed under anaerobic conditions and appears to be the result of photooxidative damage. A temperature-sensitive ycf3 mutant, generated by random mutagenesis of a conserved region near the N-terminal end of Ycf3, was used in temperature-shift experiments to show that Ycf3 is required for PSI assembly but not for its stability. Immunoblot analysis of thylakoid membranes separated by two-dimensional gel electrophoresis and immunoprecipitations shows that Ycf3 interacts directly with the PSI subunits PsaA and PsaD, but not with subunits from other photosynthetic complexes. Thus, Ycf3 appears to act as a chaperone that interacts directly and specifically with at least two of the PSI subunits during assembly of the PSI complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号