首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Analyzing the satellite DNA in the ant species Monomorium subopacum we found two unrelated families of satellite DNA. Because these satellite DNA families were isolated using the two enzymes HaeIII and EcoRI we called the two families HaeIII and EcoRI family, respectively. The HaeIII family proved to be organized in a 135-bp basic unit repeat, the EcoRI family in a 2.5-kb basic unit repeat. The latter represents perhaps the longest satellite DNA isolated up to now in insects. The HaeIII family apparently comprises about 10% of the total genomic DNA whereas the EcoRI family represents only about 1-2%. A comparative analysis of the two satellite DNA sequences showed no homology between the two families although both sequences possessed long A and T stretches. Eight of the 34 chromosomes showed hybridization with the HaeIII family and hybridization signals are visible in six chromosomes with the EcoRI family. Analysis of the electrophoretic mobility of satellite DNA on non-denaturing polyacrylamide showed that the HaeIII family is only slightly curved. However, the unit of the EcoRI satellite DNA family has curvature, especially the first 1000 bp of the monomeric repeat, in which this DNA is AT rich and has numerous A and T stretches. There are also internal inverted subrepeats in each family. The sequences of satellite DNA families found in Monomorium subopacum are different from the sequences of other satellite DNAs cloned in insects, including other species of ants.  相似文献   

2.
Evolution of ancient satellite DNAs in sturgeon genomes   总被引:1,自引:0,他引:1  
This study characterizes a repetitive DNA family of sequences in sturgeon, the PstI satellite DNA. We have found a high degree of preservation for these sequences, which are present in all 13 species analyzed, including within the genera Acipenser, Huso, and Scaphirhynchus of the family Acipenseridae. This is one of the most ancient satellite DNAs found to date, because it has been estimated to be more than 100 million years old. Alternatively, to the current view that most satellite DNAs are species-specific or preserved in a few closely related species, the PstI family and other previously characterized sturgeon satellite DNA, the HindIII, represent the most fascinating exceptions to the rapid sequence change usually undergone by satellite DNAs. Here, we compare the evolutionary pattern of these two satellite DNA families, PstI and HindIII, which differ markedly in length, sequence, and nucleotide composition. We have found that, in contrast to the situation in most other living beings, a high degree of preservation, a slow sequence change rate and slowed concerted evolution, appears to be a general rule for sturgeon satellite DNAs. The possible causes for all these features are discussed in the light of the evolutionary specifics found within these ancient organisms.  相似文献   

3.
In the two parasitoid wasps, Diadromus collaris and Eupelmus orientalis, the satellite DNAs were each found to consist wholly or largely of a single family (5%-7% of the genome). Several clones of each family were obtained and sequenced. The repeat unit in each species is characterized by both the repetition of a basic motif and the presence of an inserted sequence. Sequence comparisons with satellite DNA from D. pulchellus and E. vuilleti provide plausible scenarios for the evolution of the satellite DNA in each genus. Palindromes and A-rich tracts in each consensus sequence suggest the formation, in vivo, of hairpin structures and bend centers that may play a role in heterochromatin condensation in insects. The insertions in the repeat units of each species also contain these structural features, suggesting that maintenance of these insertions requires constraints similar to those pertaining to the rest of the satellite- DNA unit.   相似文献   

4.
Summary Two highly repeated EcoRI (0.45 × 106) and BamHI (0.17 × 106) fragments per haploid genome were found in sugar beet genomic DNA. Both fragments were located by 6% acrylamide-gel electrophoresis, purified and cloned in pUC18. Four of the inserts corresponding to each family were chosen for further study. Both fragment families display the main characteristics of the satellite DNA of animals and plants. The EcoRI and BamHI fragment families are arranged in long tandem arrays. Fragments of the EcoRI family (pBVE) were analyzed. They vary both in sequence and in length (158–160 nt) in comparison with the consensus sequence of 159nt. Both families are A-T rich; pBVE is 59% rich while pBVB is 69% rich. The BVESAT family is present in all the members of the section Vulgares. It is conserved in the section Procumbentes with 80% homology and the same length, but is not detectable in the Corollinae. The sequence variation rate and the variation in length (330±5 nt) are of the same order in comparison with those of the BVESAT family. However, the BVBSAT family is present in species of the section Vulgares only. As regards other plant satellite DNAs, the BVESAT family shares homology with Allium cepa satellite DNA, with three of the yeast centromeric sequences, and with three Arabidopsis thaliana sequences. The BVBSAT family is unique to the Vulgares and does not share any homology with other plant or animal satellite DNAs sequences so far.  相似文献   

5.
We investigated relationships among alpha satellite DNA families in the human, gorilla, chimpanzee, and orangutan genomes by filter hybridization with cloned probes which correspond to chromosome-specific alpha satellite DNAs from at least 12 different human chromosomes. These include representatives of both the dimer-based and pentamer-based subfamilies, the two major subfamilies of human alpha satellite. In addition, we evaluated several high-copy dimer-based probes isolated from gorilla genomic DNA. Under low stringency conditions, all human probes tested hybridized extensively with gorilla and chimpanzee alpha satellite sequences. However, only pentameric and other non-dimeric human alphoid probes hybridized with orangutan alpha satellite sequences; probes belonging to the dimer subfamily did not cross-hybridize detectably with orangutan DNA. Moreover, under high stringency conditions, each of the human probes hybridized extensively only with human genomic DNA; none of the probes cross-hybridized effectively with other primate DNAs. Dimer-based gorilla alpha satellite probes hybridized with human and chimpanzee, but not orangutan, sequences under low stringency hybridization conditions, yet were specific for gorilla DNA under high stringency conditions. These results indicate that the alpha satellite DNA family has evolved in a concerted manner, such that considerable sequence divergence is now evident among the alphoid sequences of closely related primate species.  相似文献   

6.
7.
The organization of the mouse satellite DNA at centromeres   总被引:2,自引:0,他引:2  
The mouse genome contains a major and a minor satellite DNA family of repetitive DNA sequences. The use of 5-azacytidine has allowed us to demonstrate that these satellite DNAs are organized in two separate domains at the centromeres of mouse chromosomes. The minor satellite is closer to the short arms of the acrocentric chromosomes than the major satellite. The major satellite is farther away, flanking the minor satellite and adjacent to the euchromatic long arm of each mouse chromosome. At the level of resolution afforded by the in situ hybridization technique it would appear that the organization of the centromeric domain of the mouse is similar to that in man. That is, both contain two repetitive DNA sequence families arranged in major blocks.  相似文献   

8.
Summary In a family with a stable dicentric 13:14 translocation chromosome, the distribution of DNA sequences complementary to satellite DNAs I, II and III and ribosomal RNA were studied. The translocation chromosome showed a loss of sequences complementary to all three satellite DNAs, located in the short arms of all the acrocentric chromosomes, but slightly more of the sequences complementary to satellite I were retained than of the other two satellite DNAs. The fact that material was lost from all three satellites indicates that they are not present as single discrete blocks in these chromosomes, when we would expect to find the distal sequences lost and the proximal ones retained, but consist of interspersed blocks with each sequence represented by more than one, and probably several blocks. There was a total loss of ribosomal DNA from the nucleolar organiser regions of the chromosomes involved in the 13:14 translocation, but an interesting finding was the presence of extra ribosomal DNA and satellite DNAs I, II and III in one chromosome 22 which was found in seven out of nine individuals of the family with the 13:14 translocation, and in only one of five individuals without the translocation. There may be a compensatory mechanism present when certain sequences are eliminated during chromosomal rearrangements. The relationship of such mechanisms to reproductive fitness is discussed.  相似文献   

9.
This paper reports the molecular and cytogenetic characterization of a HindIII family of satellite DNA in the bat species Pipistrellus pipistrellus. This satellite is organized in tandem repeats of 418 bp monomer units, and represents approximately 3% of the whole genome. The consensus sequence from five cloned monomer units has an A-T content of 62.20%. We have found differences in the ladder pattern of bands between two populations of the same species. These differences are probably because of the absence of the target sites for the HindIII enzyme in most monomer units of one population, but not in the other. Fluorescent in situ hybridization (FISH) localized the satellite DNA in the pericentromeric regions of all autosomes and the X chromosome, but it was absent from the Y chromosome. Digestion of genomic DNAs with HpaII and its isoschizomer MspI demonstrated that these repetitive DNA sequences are not methylated. Other bat species were tested for the presence of this repetitive DNA. It was absent in five Vespertilionidae and one Rhinolophidae species, indicating that it could be a species/genus specific, repetitive DNA family.  相似文献   

10.
Families of related, but nonidentical repetitive DNA sequences, termed the alphoid DNAs, have been identified and characterized in representative species from seven major primate Families. The sequences appear as old as the primate Order itself: they are found in a prosimian (lemur), in a New World monkey, and in all Old World primates examined, including man. The alphoid DNAs are uniquely primate sequences and they may represent the most abundant repetitive DNAs in the primate genome. — A classification scheme for two major families of alphoid DNAs is proposed that is based upon restriction enzyme analysis and Southern blotting with radioactive probes prepared from component DNA (Maio, 1971) and from the human EcoRI dimer sequences (Manuelidis, 1976). The family of alphoid DNAs that hybridizes readily with component is termed the HindIII family of alphoid DNAs. This family shows an almost universal distribution among present-day primates. The family of DNA sequences that hybridizes readily with the human EcoRI dimer probe is termed the EcoRI dimer family of alphoid DNAs. This family may be restricted to the great apes and man. The two probes permitted the discrimination of different, but related alphoid families in present-day primates. Multiple alphoid sequence families are found within the genomes of individual primates and the major primate taxa can be characterized by the representations of the various alphoid DNAs within their genomes. — An Appendix is presented (Brown et al., 1981) indicating that competition hybridization effects may influence the autoradiographic banding patterns, and hence, the interpretations of Southern filter-transfer hybridizations when dealing with related repetitive sequences such as the alphoid DNAs that are present in abundance in eukaryotic genomes.  相似文献   

11.
We isolated a new family of satellite DNA sequences from Hae III- and Eco RI-digested genomic DNA of the Blakistons fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.An erratum to this article can be found at Communicated by Y. Hiraoka  相似文献   

12.
The pericentromeric region of the human X chromosome is characterized by a tandemly repeated family of 2.0 kilobasepair (kb) DNA fragments, initially revealed by cleavage of human DNA with the restriction enzyme BamHI. We report here the complete nucleotide sequence of a cloned member of the repeat family and establish that this X-linked DNA family consists entirely of alpha satellite DNA. Our data indicate that the 2.0 kb repeat consists of twelve alpha satellite monomers arranged in imperfect, direct repeats. Each of the alpha X monomers is approximately 171 basepairs (bp) in length and is 60-75% identical in sequence to previously described primate alpha satellite DNAs. The twelve alpha X monomers are 65-85% identical in sequence to each other and are organized as two adjacent, related blocks of five monomers, plus an additional two monomers also related to monomers within the pentamer blocks. Partial nucleotide sequence of a second, independent copy of the 2.0 kb BamHI fragment established that the 2.0 kb repeat is, in fact, the unit of amplification on the X. Comparison of the sequences of the twelve alpha X monomers allowed derivation of a 171 bp consensus sequence for alpha satellite DNA on the human X chromosome. These sequence data, combined with the results of filter hybridization experiments of total human DNA and X chromosome DNA, using subregions within the 2.0 kb repeat as probes, provide strong support for the hypothesis that individual human chromosomes are characterized by different alpha satellite families, defined both by restriction enzyme periodicity and by chromosome-specific primary sequence.  相似文献   

13.
We have cloned and sequenced members of a family of satellite DNAs from three genera of the tilapiine tribe of fishes: Oreochromis, Sarotherodon, and Tilapia. The satellite DNAs, visualized as intensely staining bands following electrophoretic separation of EcoRI-digested genomic DNA, consist of three size variants differentially distributed in the various tilapiine species. The sizes of the monomers are approximately 237 bp (type I), 230 bp (type II), and 209 bp (type III). Several cloned monomers were sequenced from Oreochromis niloticus (type III), Oreochromis placidus (types I and II), Sarotherodon galilaeus (type I), Tilapia zillii (type I), and Tilapia rendalli (type I). Comparison of derived consensus sequences for the monomer units of the satellite DNAs revealed sequence identities within and between species that ranged from 89 to 96%. The type II and type III size variants appear to have arisen by deletions of 9 and 29 bp, respectively, within different regions of the type I satellite. Hybridization of a cloned monomer satellite from O. niloticus (type III) to PalI digests of genomic DNA from all three genera detected polymorphic, high molecular weight restriction fragments that produced fingerprint-like patterns. The complexity of these DNA fingerprints varied from one species to another, suggesting a markedly different genomic organization for these polymorphic satellite DNAs.  相似文献   

14.
Due to their high sequence diversity even among closely related species, satellite DNA sequences can be a useful molecular marker for phylogenetic and taxonomic analyses. To characterize the satellite DNA in the genome of a native muntjac species of Taiwan, the Formosan muntjac, satellite DNA clones representing three different cervid satellite DNA families from this species were isolated and analyzed. Genomic organization study of these satellite DNAs was also undertaken. Three Formosan muntjac satellite DNA clones were obtained and designated as FM-satI (1,391 bp), FM-satII (1,143 bp) and FM-satIV (1,103 bp), and found to share approximately 82, 81 and 98% sequence homology with the Chinese muntjac satellite I clone (C5), Indian muntjac satellite II clone (Mmv-0.7) and Chinese muntjac satellite IV clone (MR-1.0), respectively. These three satellite DNA families are organized in a pter<--FM-satII-FM-satIV-FM-satI-->qter orientation in the centromeric region with satII closely associated with the telomeric sequences. Satellite DNA sequence comparison, in combination with chromosome data concludes that the Formosan muntjac is likely a subspecies of M. reevesi, closely related to the Chinese muntjac. With the kinetochore satellite II DNA co-localizing with the telomeric sequences, the Formosan muntjac chromosomes could be truly telocentric.  相似文献   

15.
The species-specific profile and centromeric heterochromatin localization of satellite DNA in mammalian genomes imply that satellite DNA may play an important role in mammalian karyotype evolution and speciation. A satellite III DNA family, CCsatIII was thought to be specific to roe deer (Capreolus capreolus). In this study, however, this satellite DNA family was found also to exist in Chinese water deer (Hydropotes inermis) by PCR-Southern screening. A satellite III DNA element of this species was then generated from PCR-cloning by amplifying this satellite element using primer sequences from the roe deer satellite III clone (CCsatIII). The newly generated satellite III DNA along with previously obtained satellite I and II DNA clones were used as probes for FISH studies to investigate the genomic distribution and organization of these three satellite DNA families in centromeric heterochromatin regions of Chinese water deer chromosomes. Satellite I and II DNA were observed in the pericentric/centric regions of all chromosomes, whereas satellite III was distributed on 38 out of 70 chromosomes. The distribution and orientation of satellite DNAs I, II and III in the centromeric heterochromatin regions of the genome were further classified into four different types. The existence of a Capreolus-like satellite III in Chinese water deer implies that satellite III is not specific to the genus Capreolus (Buntjer et al., 1998) and supports the molecular phylogeny classification of Randi et al. (1998) which suggests that Chinese water deer and roe deer are closely related.  相似文献   

16.
Constitutive heterochromatin represents a substantial portion of the eukaryote genome, and it is mainly composed of tandemly repeated DNA sequences, such as satellite DNAs, which are also enriched by other dispersed repeated elements, including transposons. Studies on the organization, structure, composition and in situ localization of satellite DNAs have led to consistent advances in the understanding of the genome evolution of species, with a particular focus on heterochromatic domains, the diversification of heteromorphic sex chromosomes and the origin and maintenance of B chromosomes. Satellite DNAs can be chromosome specific or species specific, or they can characterize different species from a genus, family or even representatives of a given order. In some cases, the presence of these repeated elements in members of a single clade has enabled inferences of a phylogenetic nature. Genomic DNA restriction, using specific enzymes, is the most frequently used method for isolating satellite DNAs. Recent methods such as C0t1 DNA and chromosome microdissection, however, have proven to be efficient alternatives for the study of this class of DNA. Neotropical ichthyofauna is extremely rich and diverse enabling multiple approaches with regard to the differentiation and evolution of the genome. Genome components of some species and genera have been isolated, mapped and correlated with possible functions and structures of the chromosomes. The 5SHindIII‐DNA satellite DNA, which is specific to Hoplias malabaricus of the Erythrinidae family, has an exclusively centromeric location. The As51 satellite DNA, which is closely correlated with the genome diversification of some species from the genus Astyanax, has also been used to infer relationships between species. In the Prochilodontidae family, two repetitive DNA sequences were mapped on the chromosomes, and the SATH 1 satellite DNA is associated with the origin of heterochromatic B chromosomes in Prochilodus lineatus. Among species of the genus Characidium and the Parodontidae family, amplifications of satellite DNAs have demonstrated that these sequences are related to the differentiation of heteromorphic sex chromosomes. The possible elimination of satellite DNA units could explain the genome compaction that occurs among some species of Neotropical Tetraodontiformes. These topics are discussed in the present review, showing the importance of satellite DNA analysis in the differentiation and karyotype evolution of Actinopterygii.  相似文献   

17.
We have cloned a repetitive EcoRI fragment from the human genome which displays weak homologies with the Drosophila melanogaster transposable P-element. This cloned DNA appeared not to be a mobile element but, instead, a divergent member of human satellite II or III DNAs. We present here the first complete nucleotide sequence of a 1.797 kilobase pair (kb) satellite-like DNA. Moreover, this EcoRI satellite monomer contains a unique sequence of 49 basepairs (bp) that is devoid of the satellite consensus repeat 5'TTCCA3'. Southern hybridization analysis revealed that the cloned insert is closely related to a highly repetitive 1.8 kb KpnI family of tandemly organized satellite DNAs. Thus, the relationships among these satellite DNA families appear to be complex and may be a factor in their copy number, position and spatial organization.  相似文献   

18.
The brown frog Rana graeca was believed to be present in two areas, the Balkan Peninsula and the Italian Apennines. We have characterised the S1 satellite DNA family from Rana graeca graeca and compared it with that of Rana graeca italica. On Southern blots, the patterns of S1 satellite DNA bands are very different between Italian and Greek specimens, but homogeneous among various populations of the same taxon. The satellite DNA from the Greek taxon contains two repetitive units (S1a (494 bp) and S1b (363 bp)) that could be sequenced after amplification from genomic DNA to directly yield their consensus sequences in each genome. These consensus sequences were very similar among the Greek populations, but differed either in sequence (in S1a) or in both size and sequence (in S1b) from the corresponding repeats of the Italian taxon. A mechanism of concerted evolution is likely responsible for the high homogeneity of S1a and S1b repeat sequences within each genome and species. The genomic content of S1 satellite DNA was lower in the Greek than in the Italian populations (0.5 vs. 1.9%) and fluorescence in situ hybridization (FISH) analysis showed the S1 satellite on only 4 chromosome pairs in the Greek taxon and on all 13 chromosome pairs in the Italian taxon. The completely different structure and genomic organization of the S1 satellite DNA indicate that the Greek and Italian taxa are distinct species: R. graeca and R. italica.  相似文献   

19.
In vitro synthesized RNAs complementary to the three satellite DNAs of Drosophila virilis have been used in a series of in situ hybridization experiments with polytene chromosomes from virilis group species. Gall and Atherton (1974) demonstrated that each of the satellites of D. virilis is comprised of many repeats of a distinct, seven base pair long, simple sequence. With few exceptions, copies of each of these simple sequences are detected in the chromocenters of all virilis group species. This is true even in species which do not possess satellite DNAs at buoyant densities corresponding to those of the satellite DNAs of D. virilis. Small quantities of the three simple sequences are also detected in euchromatic arms of several different species. The same euchromatic location may contain detectable copies of one, two, or all three simple sequence DNAs. The amounts of simple sequences at each location in the euchromatin may vary between species, between different stocks of the same species, and even between individuals of the same stock. The simple sequences located in the euchromatin appear to undergo DNA replication during formation of polytene chromosomes unlike those in heterochromatin. The locations of the euchromatic sequences are not the results of single chromosomal inversion events involving heterochromatic and euchromatic breakpoints.  相似文献   

20.
One characteristic of sex chromosomes is the accumulation of a set of different types of repetitive DNA sequences in the Y chromosomes. However, little is known about how this occurs or about how the absence of recombination affects the subsequent evolutionary fate of the repetitive sequences in the Y chromosome. Here we compare the evolutionary pathways leading to the appearance of three different families of satellite-DNA sequences within the genomes of Rumex acetosa and R. papillaris, two dioecious plant species with a complex XX/XY1Y2 sex-chromosome system. We have found that two of these families, one autosomic (the RAE730 family) and one Y-linked (the RAYSI family), arose independently from the ancestral duplication of the same 120-bp repeat unit. Conversely, a comparative analysis of the three satellite-DNA families reveals no evolutionary relationships between these two and the third, RAE180, also located in the Y chromosomes. However, we have demonstrated that, regardless of the mechanisms that gave rise to these families, satellite-DNA sequences have different evolutionary fates according to their location in different types of chromosomes. Specifically, those in the Y chromosomes have evolved at half the rate of those in the autosomes, our results supporting the hypothesis that satellite DNAs in nonrecombining Y chromosomes undergo lower rates of sequence evolution and homogenization than do satellite DNAs in autosomes.[Reviewing Editor: DR. Jerzy Jurka]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号