首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timingand magnitude of Pinus contorfa Dougl. ex Loud. growth releases attributed to mountain pine beetle outbreaks in31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000.Variations in the timing of growth releases among clustered stands corresponded well to aerial survey dataindicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine howvariations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variationsin climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations ingrowth patterns among stands, was significantly (P<0.05) correlated with gradients in the percentage of pine instands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initialinfestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of thevariations and was significantly correlated with gradients in the beetle climate suitability index, extreme coldmonth temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redun-dancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetleoutbreaks in central British Columbia, particularly among stands that had a density high enough to produce agrowth release signal. Provided future studies account for interannual weather fluctuations, identification ofgrowth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history ofbeetle outbreaks over much longer time periods.  相似文献   

2.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timing and magnitude of Pinus contorta Dougl. ex Loud. growth releases attributed to mountain pine beetle outbreaks in 31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000.Variations in the timing of growth releases among clustered stands corresponded well to aerial survey data indicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine how variations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variations in climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations in growth patterns among stands, was significantly (P<0.05) correlated with gradients in the percentage of pine in stands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initial infestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of the variations and was significantly correlated with gradients in the beetle climate suitability index, extreme cold month temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redundancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetle outbreaks in central British Columbia, particularly among stands that had a density high enough to produce a growth release signal. Provided future studies account for interannual weather fluctuations, identification of growth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history of beetle outbreaks over much longer time periods.  相似文献   

3.
Warmer climates are predicted to increase bark beetle outbreak frequency, severity, and range. Even in favorable climates, however, outbreaks can decelerate due to resource limitation, which necessitates the inclusion of competition for limited resources in analyses of climatic effects on populations. We evaluated several hypotheses of how climate impacts mountain pine beetle reproduction using an extensive 9‐year dataset, in which nearly 10,000 trees were sampled across a region of approximately 90,000 km2, that was recently invaded by the mountain pine beetle in Alberta, Canada. Our analysis supports the hypothesis of a positive effect of warmer winter temperatures on mountain pine beetle overwinter survival and provides evidence that the increasing trend in minimum winter temperatures over time in North America is an important driver of increased mountain pine beetle reproduction across the region. Although we demonstrate a consistent effect of warmer minimum winter temperatures on mountain pine beetle reproductive rates that is evident at the landscape and regional scales, this effect is overwhelmed by the effect of competition for resources within trees at the site level. Our results suggest that detection of the effects of a warming climate on bark beetle populations at small spatial scales may be difficult without accounting for negative density dependence due to competition for resources.  相似文献   

4.
Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timing and magnitude of Pinus contorta Dough ex Loud. growth releases attributed to mountain pine beetle outbreaks in 31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000. Variations in the timing of growth releases among clustered stands corresponded well to aerial survey data indicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine how variations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variations in climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations in growth patterns among stands, was significantly (P〈0.05) correlated with gradients in the percentage of pine in stands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initial infestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of the variations and was significantly correlated with gradients in the beetle climate suitability index, extreme cold month temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redundancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetle outbreaks in central British Columbia, particularly among stands that had a density high enough to produce a growth release signal. Provided future studies account for interannual weather fluctuations, identification of growth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history of beetle outbreaks over much longer time periods.  相似文献   

5.
Temporal variation in population size is regulated by both exogenous forces and density-dependent feedbacks. Furthermore, accumulating evidence indicates that temporal and spatial variation in climate and resources can modify the strength of density dependence in animal populations. We analyzed six long-term time series estimates of Peromyscus leucopus (white-footed mouse) abundance from Kansas, Ohio, Pennsylvania, Virginia, Vermont, and Maine, USA, using the Kalman filter. Model-averaged estimates of the strength of delayed density dependence increased from west to east and from south to north. The strength of direct and delayed density dependence was positively related to the annual number of days with minimum temperature below −17.8°C. Annual population growth rates of P. leucopus at the Maine site were positively related to acorn abundance and P. leucopus populations tracked the changes in red-oak acorn abundance. The populations of P. leucopus living in northern latitudes might be more dependent on northern red oak (Quercus rubra) acorns for winter food than P. leucopus in southern latitudes. Furthermore, northern red oak trees mast every 4–5 years. Thus, longer, colder winters in northerly latitudes might result in stronger delayed density dependence in mouse populations with a shortage of winter food. Mice might simply track the acorn fluctuations in a delayed autocorrelated manner; however, delayed density dependence remained in our models for the Maine mouse populations after accounting for acorns, suggesting additional sources for delayed density dependence. Our results suggest that, in seed-eating Peromyscus, cyclicity may be regulated, in part, from low to high trophic levels. Deceased: Jerry O. Wolff  相似文献   

6.
1 Mountain pine beetle Dendroctonus ponderosae populations have large, economically significant outbreaks. Density dependence and environmental variability are expected to have important effects on their dynamics. We analysed time series data from an outbreak in the 1930s to determine the relative importance of population density and environmental variability on local population growth rates.
2 Resource depletion occurred rapidly at the scale of 0.4 ha and population growth rates were strongly density dependent. Annual environmental changes did not have detectable effects on population growth rates, leading to the conclusion that intrinsic processes influenced local population density more than extrinsic factors during this outbreak.
3 Our calculated value of r max (1.16) does not suggest intrinsically cyclic population dynamics. Our estimate of r max and density dependence will be useful in developing applied models of mountain pine beetle outbreaks, and the subsequent evaluation of management strategies.  相似文献   

7.
Climate change and the outbreak ranges of two North American bark beetles   总被引:2,自引:0,他引:2  
Abstract
  • 1 One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large‐scale disturbances to pine forests in the south‐eastern and western United States, respectively.
  • 2 Our objective was to investigate potential range shifts under climate change of outbreak areas for both bark beetle species and the areas of occurrence of the forest types susceptible to them.
  • 3 To project range changes, we used discriminant function models that incorporated climatic variables. Models to project bark beetle ranges employed changed forest distributions as well as changes in climatic variables.
  • 4 Projected outbreak areas for southern pine beetle increased with higher temperatures and generally shifted northward, as did the distributions of the southern pine forests.
  • 5 Projected outbreak areas for mountain pine beetle decreased with increasing temperature and shifted toward higher elevation. That trend was mirrored in the projected distributions of pine forests in the region of the western U.S. encompassed by the study.
  • 6 Projected outbreak areas for the two bark beetle species and the area of occurrence of western pine forests increased with more precipitation and decreased with less precipitation, whereas the area of occurrence of southern pine forests decreased slightly with increasing precipitation.
  • 7 Predicted shifts of outbreak ranges for both bark beetle species followed general expectations for the effects of global climate change and reflected the underlying long‐term distributional shifts of their host forests.
  相似文献   

8.
The relative contribution of density-dependent and density-independent factors on variation in the population growth rate of an introduced population Svalbard reindeer was studied by time series analysis. No significant effects of either direct or delayed density-dependence were found. Annual variation in population growth rate was strongly negatively related to amount of precipitation during winter (i.e. high growth rates occurred when winters were dry). There was no significant relationship between the NAO-index and the population growth rate. However, there was an interaction between population density and the climatic variables, i.e. the effect of climate was stronger at high densities. These results support the view that population fluctuations of arctic ungulates are strongly influenced by stochastic variation in climate.  相似文献   

9.
Recently there has been considerable interest in determining the relative roles of endogenous (density-dependent) and exogenous (density-independent) factors in driving the population dynamics of free-ranging ungulates. We used time-series analysis to estimate the relative contributions of density-dependent forage competition, climatic fluctuation, and harvesting on the population dynamics of white-tailed deer (Odocoileus virginianus) in Nova Scotia, Canada, from 1983 to 2000. A model incorporating the population density 2 years previous, an interaction term for the harvest of females and population density 2 years previous, and the total snowfall during the previous 2 winters explained 80% of the variation in inter-annual population growth rate. Natality of adult females was negatively related to deer density during the present winter, whereas that of yearlings may have been correlated with the snowfall of three winters previous. Natality of fawns was related to deer density and total snowfall during the previous winter. Coyotes (Canis latrans) prey extensively on deer fawns in northeastern North America and the annual harvest of snowshoe hares (Lepus americanus), the major alternate prey of coyotes, explained 48% of the inter-annual variation in fawn recruitment. The proportions of fawn, yearling, and adult deer suffering from severe malnutrition during late winter were all correlated with deer density during the present winter. We conclude that the limiting effects of winter weather on over-winter survival of deer may be cumulative over two consecutive winters. During the late 1980s, density dependence and winter severity acted in concert to effect substantial declines in deer population growth both by effecting winter losses directly and by exacerbating predation by coyotes. During this period liberal harvesting did not relieve density-dependent forage competition and probably accelerated the decline.  相似文献   

10.
Scarcity of long-term (over 30 years) data series represents a major challenge for an accurate estimation of the role of density-dependent processes in population regulation. We analyzed population densities of the wingless parthenogenic morphs of buckthorn aphid (BA), Aphis nasturtii Kaltenbach, potato aphid (PA), Macrosiphum euphorbiae (Thomas), and green peach aphid (GPA), Myzus persicae (Sulzer) from 1949 to 2003 for signs of density-dependent regulation. We found strong evidence of density-dependent regulation, with detection of density dependence being fairly consistent among the different statistical techniques. Direct density dependence was detected for the populations of all three species. There was also evidence of delayed density dependence for PA. The periodicity of population fluctuations for BA and GPA was 6.1 years and 3.9 years, respectively. The periodicity for PA was not explicit, being highly variable throughout the time series. Effects of density-independent weather factors were relatively minor compared to density-dependent regulation. The BA populations experienced a significant reduction in both density and annual oscillations starting in 1995, while GPA populations experienced a similar reduction in 1991. No such change was apparent for PA. The most likely explanation for the observed phenomenon is a change in the composition of the lady beetle community following the establishment of two alien coccinellid species, and/or changes in insecticide use by commercial growers in the area of the study.  相似文献   

11.
In the dry Swiss Rhone Valley, Scots pine forests have experienced increased mortality in recent years. It has commonly been assumed that drought events and bark beetles fostered the decline, however, whether bark beetle outbreaks increased in recent years and whether they can be linked to drought stress or increasing temperature has never been studied. In our study, we correlated time series of drought indices from long-term climate stations, 11-year mortality trends from a long-term research plot, and mortality probabilities modeled from tree rings (as an indicator of tree vitality) with documented occurrences of various bark beetle species and a buprestid beetle, using regional Forest Service reports from 1902 to 2003 and advisory cases of the Swiss Forest Protection Service (SFPS) from 1984 to 2005. We compared the historical findings with measured beetle emergence from a 4-year tree felling and breeding chamber experiment. The documented beetle-related pine mortality cases increased dramatically in the 1990s, both in the forest reports and the advisory cases. The incidents of beetle-related pine mortality correlated positively with spring and summer temperature, and with the tree-ring based mortality index, but not with the drought index. The number of advisory cases, on the other hand, correlated slightly with summer drought index and temperature, but very highly with tree-ring-based mortality index. The tree-ring-based mortality index and observed tree mortality increased in years following drought. This was confirmed by the beetle emergences from felled trees. Following dry summers, more than twice as many trees were colonized by beetles than following wet summers. We conclude that increased temperatures in the Swiss Rhone Valley have likely weakened Scots pines and favored phloeophagous beetle population growth. Beetles contributed to the increased pine mortality following summer drought. Among the factors not addressed in this study, changed forest use may have also contributed to increased beetle populations and Scots pine mortality, whereas air pollution seems to be of lesser importance.  相似文献   

12.
Hannu  Pöysä  Mauri  Pesonen 《Oikos》2003,102(2):358-366
We investigated whether the degree of exchange with other populations affects the occurrence of density-dependent regulation. We contrasted data from an Icelandic and a Finnish population of breeding wigeons ( Anas penelope ), the former population being more closed than the later. We looked for density dependence in time-series data and investigated whether breeding success is density dependent and plays a role in population dynamics and regulation. Time-series analysis did not reveal density-dependent regulation in either population. Nor did we find evidence of density-dependent breeding success in either population. However, population growth rate appeared to be strongly dependent on the breeding success in the previous year in the closed population but not in the open population. Our findings underline how important it is to link time-series analysis to the study of potential stabilizing mechanisms in order to understand population dynamics and regulation. We also suggest that it may be a difficult task to achieve sustainability in waterfowl harvesting, the theoretical basis of which is density-dependent population regulation.  相似文献   

13.
 Following predictions from climatic general circulation models, the effects of perturbations in global climate are expected to be most pronounced in the Northern Hemisphere. Elaborating on a recently developed plant–herbivore–climate model, we explore statistically how different winter climate regimes and density-dependent processes during the past century have affected population dynamics of two arctic ungulate species. Our analyses were performed on the dynamics of six muskox and six caribou populations. In muskoxen, variation in winter climate, mediated through the North Atlantic Oscillation (NAO), explained up to 24% of the variation in interannual abundance, whereas in caribou up to 16% was explained by the NAO. Muskoxen responded negatively following warm and snowy winters, whereas caribou responded negatively to dry winters. Direct and delayed density dependence was recorded in most populations and explained up to 32% and 90% of variations in abundance of muskoxen and caribou, respectively. Received: November 19, 2001 / Accepted: May 28, 2002  相似文献   

14.
Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is a significant forest disturbance agent with a widespread distribution in western North America. Population success is influenced by temperatures that drive phenology and ultimately the adult emergence synchrony required to mass attack and kill host trees during outbreaks. In addition to lifestage‐specific developmental rates and thresholds, oviposition timing can be a source of variance in adult emergence synchrony, and is a critical aspect of mountain pine beetle phenology. Adaptation to local climates has resulted in longer generation times in southern compared to northern populations in common gardens, and the role of oviposition rate in these differences is unclear. Oviposition rates and fecundity in a northern population have been described, although data are lacking for southern populations. We assessed southern mountain pine beetle oviposition rates and fecundity in a range of temperatures using a non‐destructive technique that included frequent X‐ray imaging. We found that oviposition rate and fecundity vary independently such that a female with high oviposition rate did not necessarily have high fecundity and vice versa. Observed fecundity within the 30‐day experimental period was lowest at the lowest temperature, although estimated potential fecundity did not differ among temperatures. Females at varying temperatures have the potential to lay similar numbers of eggs, although it will take longer at lower temperatures. Southern mountain pine beetle reared in Pinus strobiformis Engelm. (Pinaceae) had a higher upper threshold for oviposition, a similar lower threshold, and slightly greater potential fecundity compared to a northern population reared in Pinus contorta Douglas. A comparison of modeled oviposition rates between the two populations, which could be influenced by host tree, suggests that differences in oviposition rate do not explain observed differences in total generation time. Our oviposition model will facilitate development of a phenology model for southern mountain pine beetle populations.  相似文献   

15.
We present a model on plant-deer climate interactions developed for improving our understanding of the temporal dynamics of deer abundance and, in particular, how intrinsic (density-dependent) and extrinsic (plants, climate) factors influence these dynamics. The model was tested statistically by analysing the dynamics of five Norwegian red deer populations between 1964 and 1993. Direct and delayed density-dependence significantly influenced the development of the populations: delayed density-dependence primarily operated through female density, whereas direct density-dependence acted through both female and male densities. Furthermore, population dynamics of Norwegian red deer were significantly affected by climate (as measured by the global weather phenomenon, the North Atlantic Oscillation: NAO). Warm, snowy winters (high NAO) were associated with decreased deer abundance, whereas the delayed (two-year) effect of warm, snowy winters had a positive effect on deer abundance. Our analyses are argued to have profound implications for the general understanding of climate change and terrestrial ecosystem functioning.  相似文献   

16.
Question: Can fire be used to maintain Yellow pine (Pinus subgenus Diploxylon) stands disturbed by periodic outbreaks of southern pine beetle? Location: Southern Appalachian Mountains, USA. Methods: We used LANDIS to model vegetation disturbance and succession on four grids representative of xeric landscapes in the southern Appalachians. Forest dynamics of each landscape were simulated under three disturbance scenarios: southern pine beetle, fire, and southern pine beetle and fire, as well as a no disturbance scenario. We compared trends in the abundance of pine and hardwood functional types as well as individual species. Results: Yellow pine abundance and open woodland conditions were best maintained by a combination of fire and southern pine beetle disturbance on both low elevation sites as well as mid‐elevation ridges & peaks. On mid‐elevation SE‐W facing slopes, pine woodlands were best maintained by fire alone. Conclusions: Our simulations suggest that fire can help maintain open pine woodlands in stands affected by southern pine beetle outbreaks.  相似文献   

17.
The pine beauty moth, Panolis flammea, is a defoliating pest of lodgepole pine (Pinus contorta) forests in Scotland. This article reviews early and recent research on the population ecology of Panolis flammea and presents an analysis of pupal survey data collected between 1977 and 1993. Research in the 1980s suggested that natural enemies, although effective in preventing P. flammea outbreaks on Scots pine (Pinus sylvestris), played an insignificant role in the population dynamics of P. flammea on lodgepole pine. However, analysis of pupal survey data showed that delayed density-dependent action of natural enemies, probably parasitoids, was overlooked during the 1970s and 1980s. Recent research suggests that fungal pathogens are responsible for a decline in the frequency and severity of outbreaks of P. flammea on lodgepole pine. This suggestion, together with the overlooked importance of other natural enemies, indicates that the population ecology of P. flammea in Scotland has changed during the past 20 years and requires a full reappraisal. Received: May 31, 1999 / Accepted: August 18, 1999  相似文献   

18.
The incidence of screwworm cases in Texas during the 1962-82 sterile-male eradication campaign is analysed in relation to seasonal temperatures and screwworm density. The analysis shows that screwworm outbreaks occur in response to favourable seasonal conditions, especially warm winters and cool summers. The outbreaks collapse following cold winters and hot summers. Screwworm density in autumn also influences rates of increase, possibly through a shortage of wounded hosts in the autumn-winter period. The analysis provides a simple predictive model which not only accounts for the fluctuations in case incidence seen in Texas during the eradication campaign, which others have attributed to strain problems and release methods, but also simulates the historical pattern of screwworm abundance in both Texas and Florida over the last 100 years. It is concluded that screwworm, being essentially a tropical species, might well have been eradicated from the southern U.S.A. by exceptionally unfavourable climate such as occurred in Florida in 1958 and in Texas in the late 1970s and early 1980s. Certainly, unfavourable climate must have been important to the success of the eradication campaigns.  相似文献   

19.
Population regulation is fundamental to the long-term persistence of populations and their responses to harvesting, habitat modification, and exposure to toxic chemicals. In fish and other organisms with complex life histories, regulation may involve density dependence in different life-stages and vital rates. We studied density dependence in body growth and mortality through the life-cycle of laboratory populations of zebrafish Danio rerio. When feed input was held constant at population-level (leading to resource limitation), body growth was strongly density-dependent in the late juvenile and adult phases of the life-cycle. Density dependence in mortality was strong during the early juvenile phase but declined thereafter and virtually ceased prior to maturation. Provision of feed in proportion to individual requirements (easing resource limitation) removed density dependence in growth and substantially reduced density dependence in mortality, thus indicating that 'bottom-up' effects act on growth as well as mortality, but most strongly on growth. Both growth and mortality played an important role in population regulation, with density-dependent growth having the greater impact on population biomass while mortality had the greatest impact on numbers. We demonstrate a clear ontogenic pattern of change in density-dependent processes within populations of a very small (maximum length 5 mm) fish, maintained in constant homogeneous laboratory conditions. The patterns are consistent with those distilled from studies on wild fish populations, indicating the presence of broad ontogenic patterns in density-dependent processes that are invariant to maximum body size and hold in homogeneous laboratory, as well as complex natural environments.  相似文献   

20.
We demonstrate changes over time in the spatial and temporal dynamics of an herbivorous small rodent by analyzing time series of population densities obtained at 21 locations on clear cuts within a coniferous forest in Britain from 1984 to 2004. Changes had taken place in the amplitude, periodicity, and synchrony of cycles and density-dependent feedback on population growth rates. Evidence for the presence of a unidirectional traveling wave in rodent abundance was strong near the beginning of the study but had disappeared near the end. This study provides empirical support for the hypothesis that the temporal (such as delayed density dependence structure) and spatial (such as traveling waves) dynamics of cyclic populations are closely linked. The changes in dynamics were markedly season specific, and changes in overwintering dynamics were most pronounced. Climatic changes, resulting in a less seasonal environment with shorter winters near the end of the study, are likely to have caused the changes in vole dynamics. Similar changes in rodent dynamics and the climate as reported from Fennoscandia indicate the involvement of large-scale climatic variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号