首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditional gene targeting strategies are progressively used to study gene function tissue-specifically and/or at a defined time period. Instrumental to all of these strategies is the generation of targeting vectors, and any methodology that would streamline the procedure would be highly beneficial. We describe a comprehensive transposition-based strategy to produce gene-targeting vectors for the generation of mouse conditional alleles. The system employs a universal cloning vector and two custom-designed mini-Mu transposons. It produces targeting constructions directly from BAC clones, and the alleles generated are modifiable by Cre and Flp recombinases. We demonstrate the applicability of the methodology by modifying two mouse genes, Chd22 and Drapc1. This straightforward strategy should be readily suitable for high-throughput targeting vector production.  相似文献   

2.
Among the different approaches used to define the function of a protein of interest, alteration and/or deletion of its encoding gene is the most direct strategy. Homologous recombination between the chromosomal gene locus and an appropriately designed targeting vector results in an alteration or knockout of the gene of interest. Homologous recombination is easily performed in yeast or in murine embryonic stem cells, but is cumbersome in more differentiated and diploid somatic cell lines. Here we describe an efficient method for targeting both alleles of a complex human gene locus in DG75 cells, a cell line of lymphoid origin. The experimental approach included a conditional knockout strategy with three genotypic markers, which greatly facilitated the generation and phenotypic identification of targeted recombinant cells. The vector was designed such that it could be reused for two consecutive rounds of recombination to target both alleles. The human DG75 cell line appears similar to the chicken DT40 pre B-cell line, which supports efficient homologous recombination. Therefore, the DG75 cell line is a favorable addition to the limited number of cell lines amenable to gene targeting and should prove useful for studying gene function through targeted gene alteration or deletion in human somatic cells.  相似文献   

3.
Red/ET重组在基因打靶载体快速构建中的应用   总被引:6,自引:0,他引:6  
王军平  张友明 《遗传》2005,27(6):953-958
通过合理应用Red/ET重组技术实现基因打靶载体的快速构建。在Red/ET重组介导下,首先从基因组DNA中将靶基因片段亚克隆至打靶质粒载体中,随后将两端带有50 bp同源臂的抗性筛选基因插入并替换靶基因上的目标序列,如此两步操作即可完成一个传统型基因敲除打靶载体的构建;结合Cre-loxP系统,在传统型基因敲除打靶载体的基础上,经过再一轮的Red/ET重组就能够成功实现条件性基因敲除打靶载体的构建。整个实验过程不需要PCR扩增长、短臂序列,也不涉及酶切、连接反应,因此,不仅省时、省力,而且所构建的基因打靶载体序列准确,无突变。此实验方法的建立为加速后基因组时代的基因功能研究提供了一条捷径。  相似文献   

4.
Gene targeting is a very powerful tool for studying mammalian development and physiology and for creating models of human diseases. In many instances, however, it is desirable to study different modifications of a target gene, but this is limited by the generally low frequency of homologous recombination in mammalian cells. We have developed a novel gene-targeting strategy in mouse embryonic stem cells that is based on the induction of endogenous gap repair processes at a defined location within the genome by induction of a double-strand break (DSB) in the gene to be mutated. This strategy was used to knock in an NH2-ezrin mutant in the villin gene, which encodes an actin-binding protein expressed in the brush border of the intestine and the kidney. To induce the DSB, an I-SceI yeast meganuclease restriction site was first introduced by gene targeting to the villin gene, followed by transient expression of I-SceI. The repair of the ensuing DSB was achieved with high efficiency (6 × 10−6) by a repair shuttle vector sharing only a 2.8-kb region of homology with the villin gene and no negative selection marker. Compared to conventional gene-targeting experiments at the villin locus, this represents a 100-fold stimulation of gene-targeting frequency, notwithstanding a much lower length of homology. This strategy will be very helpful in facilitating the targeted introduction of several types of mutations within a gene of interest.  相似文献   

5.
The generation of specific mutant animal models is critical for functional analysis of human genes. The conventional gene targeting approach in embryonic stem cells (ESCs) by homologous recombination is however laborious, slow, expensive, and limited to species with functional ESCs. It is therefore a long-sought goal to develop an efficient and simple alternative gene targeting strategy. Here we demonstrate that, by combining an efficient ZFN pair and ssODN, a restriction site and a loxP site were successfully introduced into a specific genomic locus. A targeting efficiency up to 22.22% was achieved by coinciding the insertion site and the ZFN cleavage site isogenic and keeping the length of the homology arms equal and isogenic to the endogenous target locus. Furthermore, we determine that ZFN and ssODN-assisted HR is ssODN homology arm length dependent. We further show that mutant alleles generated by ZFN and ssODN-assisted HR can be transmitted through the germline successfully. This study establishes an efficient gene targeting strategy by ZFN and ssODN-assisted HR in mouse zygotes, and provides a potential avenue for genome engineering in animal species without functional ES cell lines.  相似文献   

6.
Gene targeting refers to the precise modification of a genetic locus using homologous recombination. The generation of novel cell lines and transgenic mouse models using this method necessitates the construction of a ‘targeting’ vector, which contains homologous DNA sequences to the target gene, and has for many years been a limiting step in the process. Vector construction can be performed in vivo in Escherichia coli cells using homologous recombination mediated by phage recombinases using a technique termed recombineering. Recombineering is the preferred technique to subclone the long homology sequences (>4kb) and various targeting elements including selection markers that are required to mediate efficient allelic exchange between a targeting vector and its cognate genomic locus. Typical recombineering protocols follow an iterative scheme of step-wise integration of the targeting elements and require intermediate purification and transformation steps. Here, we present a novel recombineering methodology of vector assembly using a multiplex approach. Plasmid gap repair is performed by the simultaneous capture of genomic sequence from mouse Bacterial Artificial Chromosome libraries and the insertion of dual bacterial and mammalian selection markers. This subcloning plus insertion method is highly efficient and yields a majority of correct recombinants. We present data for the construction of different types of conditional gene knockout, or knock-in, vectors and BAC reporter vectors that have been constructed using this method. SPI vector construction greatly extends the repertoire of the recombineering toolbox and provides a simple, rapid and cost-effective method of constructing these highly complex vectors.  相似文献   

7.
Intercross of mice transgenic for Flp-recombinase with the CD19cre mouse strain leads to excision of the Frt-flanked neo R cassette from the CD19cre knock-in transgene. This significantly reduces the expression level of Cre by the CD19cre transgene and consequently decreases the extent of Cre-mediated recombination of loxP-flanked alleles, most likely due to the fact that this neo R cassette contains polyoma enhancer sequences. We wish to draw attention to this finding, since the Flp-deleter mouse strain is commonly used to remove Frt-flanked selection cassettes in vivo from conditional alleles. Therefore conditional alleles have to be separated from the Flp-deleter transgene by breeding before crosses with CD19cre mice are initiated. In addition our findings suggest that gene expression from the CD19 locus can be increased by the insertion of exogenous enhancer sequences, without compromising B cell specificity.  相似文献   

8.
Here we report an approach to generate a knock-in mouse model using an ‘ends-out’ gene replacement vector to substitute the murine Parp-1 (mParp-1) coding sequence (32 kb) with its human orthologous sequence (46 kb). Unexpectedly, examination of mutant ES cell clones and mice revealed that site-specific homologous recombination was mimicked in three independently generated ES cell clones by bidirectional extension of the vector homology arms using the endogenous mParp-1-flanking sequences as templates. This was followed by adjacent integration of the targeting vector, thus leaving the endogenous mParp-1 locus functional. A related phenomenon termed ‘ectopic gene targeting’ has so far only been described for ‘ends-in’ integration-type vectors in non-ES cell gene targeting. We provide reliable techniques to detect such ectopic gene targeting which represents an unexpected caveat in mouse genetic engineering that should be considered in the design and validation strategy of future gene knock-in approaches. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background  

Conditional knockout mice are a useful tool to study the function of gene products in a tissue-specific or inducible manner. Classical approaches to generate targeting vectors for conditional alleles are often limited by the availability of suitable restriction sites. Furthermore, plasmid-based targeting vectors can only cover a few kB of DNA which precludes the generation of targeting vectors where the two loxP sites are placed far apart. These limitations have been overcome in the recent past by using homologous recombination of bacterial artificial chromosomes (BACs) in Escherichia coli to produce large targeting vector containing two different loxP-flanked selection cassettes so that a single targeting event is sufficient to introduce loxP-sites a great distances into the mouse genome. However, the final targeted allele should be free of selection cassettes and screening for correct removal of selection cassettes can be a laborious task. Therefore, we developed a new strategy to rapidly identify ES cells containing the desired allele.  相似文献   

10.
Vectors used for gene targeting experiments usually consist of a selectable marker flanked by two regions of homology to the targeted gene. In a homologous recombination event, the selectable marker replaces an essential element of the target gene rendering it inactive. Other applications of gene targeting technology include gene replacement (knockins) and conditional vectors which allow for the generation of inducible or tissue-specific gene-targeting events. The assembly of gene-targeting vectors is generally a laborious process requiring considerable technical skill. The procedures presented here report the application of transposons as tools for the construction of targeting vectors. Two mini-Mu transposons were sequentially inserted by in vitro transposition at each side of the region targeted for deletion. One such transposon carries an antibiotic resistance marker suitable for selection in mammalian cells. A deletion is then generated between the two transposons either by LoxP-induced recombination or by restriction digestion followed by ligation. This deletion removes part of both transposons plus the targeted region in between, leaving a transposon carrying the selectable marker flanked by two arms which are homologous to the targeted gene. Targeting vectors constructed using these transposons were electroporated into embryonic stem cells and shown to be effective in gene-targeting events.  相似文献   

11.
The capability to modify a genomic sequence into a designed sequence is a powerful tool for biologists and breeders to elucidate the function of an individual gene and its cis-acting elements of multigene families in the genome. Gene targeting refers to the alteration of a specific DNA sequence in an endogenous gene at its original locus in the genome. In higher plants, however, the overwhelming occurrence of the random integration of transgenes by non-homologous end-joining is the main obstacle to develop efficient gene targeting. Two approaches have been undertaken to modify a genomic sequence in higher plants– chimeric RNA/DNA oligonucleotide-directed gene targeting to generate a site-specific base conversion, and homologous recombination-dependent gene targeting to produce either a base change or a gene replacement in a sequence-specific manner. The successful and reproducible targeting of an endogenous gene by homologous recombination, independently of gene-specific selection by employing a strong positive-negative selection, has been demonstrated for the first time in rice, an important staple food and a model plant for other cereal species. This review addresses the current status of targeting of an endogenous natural gene in rice and other higher plants and discusses possible models for Agrobacterium- mediated gene targeting by homologous recombination using a strong positive–negative selection.  相似文献   

12.
Rapid generation of inducible mouse mutants   总被引:11,自引:2,他引:9  
We have generated an optimized inducible recombination system for conditional gene targeting based on a Cre recombinase–steroid receptor fusion. This configuration allows efficient Cre-mediated recombination in most organs of the mouse upon induction, without detectable background activity. An ES cell line, was established that carries the inducible recombinase and a loxP-flanked lacZ reporter gene. Out of this line, completely ES cell-derived mice were efficiently produced through tetraploid blastocyst complementation, without the requirement of mouse breeding. Our findings provide a new concept allowing the generation of inducible mouse mutants within 6 months, as compared to 14 months using the current protocol.  相似文献   

13.
Summary We find that recombination between two alleles of the maize A1 locus that contain transposon insertions at known molecular positions can occur at 0.04–0.08 cM per kbp (centimorgan per kilobase pair), which is two orders of magnitude higher than the recombination rate for the whole maize genome. It is however, close to the rates found within the bronze locus, another maize structural gene for which both genetic and molecular data are available. This observation supports the idea that the genome consists of regions that are highly recombinogenic — in some cases, at least, structural genes — interspersed with regions that are less recombinogenic.  相似文献   

14.
The FLP recombinase of yeast catalyses site-specific recombination between repeated FLP recombinase target (FRT) elements in yeast and in heterologous system (Escherichia coli, Drosophila, mosquito and cultured mammalian cells). In this report, it is shown that transient FLP recombinase expression can recombine and activate an extrachromosomal silent reporter gene following coinjection into fertilized one-cell mouse eggs. Furthermore, it is demonstrated that introduction of a FLP-recombinase expression vector into transgenic one-cell fertilized mouse eggs induces a recombination event at a chromosomal FRT target locus. The resulting event occured at the one-cell stage and deleted a chromosomal tandem array of a FRT containinglacZ expression cassette down to one or two copies. These results demonstrate that the FLP recombinase can be utilized to manipulate the genome of transgenic animals and suggest that FLP recombinase-mediated plasmid-to-chromosome targeting is feasible in microinjected eggs.  相似文献   

15.
16.
Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function.However,contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported.Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system.We demonstrated the feasibility of this strategy at sox10 and isl1 loci,and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter,allowing generation of genetic mosaics for lineage tracing.We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles,both tagged with two different fluorescent reporters.By introducing Cre recombinase,these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel;furthermore,differential fluorescent labeling of the positive and negative alleles enables simple,early and efficient realtime discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes.We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus.Furthermore,we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology.Our system could easily be expanded for other applications or to other organisms,and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.  相似文献   

17.
The bacteriophage P1 Cre/loxP site-specific recombination system is a useful tool for engineering chromosomal changes in animal cells. Transient expression of the Cre recombinase gene directly introduced into fertilized eggs by pronuclear injection has been reported to provide an efficient method of transgene modulation in fertilized eggs. In the present study, we examined the efficacy of this method to remove loxP-flanked DNA sequences in a gene-targeted locus in fertilized eggs. We replaced a part of the T-cell receptor γ (TCR Vγ) locus with homologous sequences containing a loxP-flanked neogene in mouse embryonic stem (ES) cells by gene-targeting technique. The resulting ES cell clones containing the mutant allele (VγLNL) were used to generate chimeric mice by blastocyst injection. Eight male chimeras were bred with superovulated wild-type female mice. One hundred and seventy-six fertilized eggs were collected, and subjected to pronuclear injection of the Cre expression plasmid, pCAGGS-Cre, of a covalently closed circular form. Three out of 11 pups inherited the targeted Vγ locus. The inherited targeted allele of these 3 mice was shown to have undergone Cre-mediated recombination, resulting in a deletion of the loxP-flanked sequences (VγΔ) as shown by Southern blot analysis of DNA from tail biopsies. All 3 founder mutant mice were capable of transmitting the VγΔ locus to their offspring. The other 8 pups carried only wild-type alleles. There were no pups carrying the unrecombined VγLNL locus. Thus, the frequency of Cre-mediated recombination was 100% (3/3) with this method. In contrast, when closed circular pCAGGS-Cre plasmid was introduced into ES cells by electroporation, the recombination frequency of the VγLNL locus was 9.6%. These results indicated that our system based on transient expression of the Cre recombinase gene directly introduced into fertilized eggs by pronuclear injection provides a fast and efficient method for generating mutant mice with desired deletions or translocations in target genes. Mol Reprod Dev 46:109–113, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
A large-scale transformation procedure handling an adequate number of stable transformants with highly efficient positive-negative selection is a necessary prerequisite to successful gene targeting by homologous recombination, as the integration of a transgene by somatic homologous recombination in higher plants has been reported to be 10-3 to 10-5 compared with random integration by non-homologous end joining. We established an efficient and large-scale Agrobacterium-mediated rice transformation protocol that generated around 103 stable transformants routinely from 150 seeds and a strong positive-negative selection procedure that resulted in survivors at 10-2 using the gene for diphtheria toxin A fragment as a negative marker. The established transformation procedure provides a basis for efficient gene targeting in rice.Abbreviations AS: Acetosyringone - 5-FU: 5-Fluorouracil - FW: Fresh weight - GT: Gene targeting - HR: Homologous recombination - NHEJ: Non-homologous end joining Communicated by H. Ebinuma  相似文献   

19.
Gene trapping is a high-throughput insertional mutagenesis approach that has been primarily used in mouse embryonic stem cells (ESCs). As a high throughput technology, gene trapping helped to generate tenth of thousands of ESC lines harboring mutations in single genes that can be used for making knock-out mice. Ongoing international efforts operating under the umbrella of the International Knockout Mouse Consortium (IKMC; www.knockoutmouse.org) aim to generate conditional alleles for every protein coding gene in the mouse genome by high throughput conditional gene targeting and trapping. Here, we provide protocols for gene trapping in ESCs that can be easily adapted to any other mammalian cell. We further provide protocols for handling and verifying conditional gene trap alleles in ESC lines obtained from the IKMC repositories and describe a highly efficient method for the postinsertional modification of gene trap alleles. More specifically, we describe a protein tagging strategy based on recombinase mediated cassette exchange (RMCE) that enables protein localization and protein-protein interaction studies under physiological conditions.  相似文献   

20.
Summary We have developed a procedure for determining the rates of mitotic recombination of an interrupted duplication created by integration of transforming plasmid sequences at the benA, beta-tubulin, locus of Aspergillus nidulans. Transformation of a strain carrying a benomyl-resistant benA allele with plasmid AIpGM4, which carries the wild-type benA allele and the pyr4 (orotidine-5-phosphate decarboxylase) gene of Neurospora crassa, creates an interrupted duplication with plasmid sequences flanked by two benA alleles, one wild type and one benomyl resdistant. Such transformants will not grow in the presence of high levels of benomyl. Mitotic recombination causes the loss of the wild-type benA allele or conversion of the wild-type to the mutant allele resulting in nuclei carrying only the benomylresistant allele. Conidia containing such nuclei can be selected on media with high benomyl allowing easy quantitation of mitotic recombination. We found that the rate of recombination giving rise to benomyl-resistant conidia was 4.6×10-4. Reciprocal recombination leading to benomyl-resistant conidia lacking plasmid sequences occurred at a rate of 2.0×10-4 and gene conversion leading to benomylresistant conidia occurred at a rate of 2.6×10-4. We selected for reciprocal recombination leading to loss of pyr4 sequences on 5-fluoro-orotic acid and used this selection for two-step gene replacement of a mutant benA allele with the wild-type allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号