首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
The objective of the present study is to model the analogues of monosialoganglioside (GM3) by making modifications in its sialic acid residue with different substitutions in aqueous environment and to determine their structural stability based upon computational molecular dynamics. Molecular mechanics and molecular dynamics investigation was carried out to study the conformational preferences of the analogues of GM3. Dynamic simulations were carried out on the analogues of GM3 varying in the substituents at C-1, C-4, C-5, C-8 and C-9 positions of their sialic acid or Neuraminic acid (NeuAc) residue. The analogues are soaked in a periodic box of TIP3P water as solvent and subjected to a 10 ns molecular dynamics (MD) simulation using AMBER ff03 and gaff force fields with 30 ps equilibration. The analogue of GM3 with 9-N-succNeuAc (analogue5, C9 substitution) was observed to have the lowest energy of ?6112.5 kcal/mol. Graphical analysis made on the MD trajectory reveals the direct and water mediated hydrogen bonds existing in these sialic acid analogues. The preferable conformations for glycosidic linkages of GM3 analogues found in different minimum energy regions in the conformational maps were identified. This study sheds light on the conformational preferences of GM3 analogues which may be essential for the design of GM3 analogues as inhibitors for different ganglioside specific pathogenic proteins such as bacterial toxins, influenza toxins and neuraminidases.  相似文献   

2.
9-(5',5'-Difluoro-5'-phosphonopentyl)guanine (DFPP-G) and its hypoxanthine analogue (DFPP-H) were modified by introducing a methyl group to all possible positions of the linker connecting a purine and difluoromethylenephosphonic acid moiety to evaluate the effects of the methyl group on inhibition against purine nucleoside phosphorylase. The methyl group on the linker affected the inhibition in a positional-dependent manner. Inhibitory potency of alpha-methyl and beta-methyl-substituted analogues of DFPP-H increased by about 600- to 1000-fold upon converting to cyclopropane nucleotide analogue (+/-)-4.  相似文献   

3.
Mercuric-ion promoted condensation of 6-chloropurine with acetylated dimethyl dithioacetals of D-ribose and D-arabinose in nitromethane afforded a separable mixture of 1'(S)-2,3,4,5-tetra-O-acetyl-1-(6-chloropurin-9-yl)-1-S-methyl-1-thio-D-ribitol (4) and its 1'(R) diastereomer, and the corresponding 1'(R)-arabinitol analogue (5); the structure of 4 was confirmed by X-ray crystallography. Desulfurization of 4 and 5 by tributylstannane in toluene gave 2,3,4,5-tetra-O-acetyl-1-(6-chloropurin-9-yl)-1-deoxy-D-ribitol (7) and the arabinitol analogue 8, convertible by the action of thiourea into the 1,6-dihydro-6-thioxopurin-9-yl analogues 9 and 10, which on deacetylation furnished the corresponding acyclic-sugar nucleosides 11 and 12.  相似文献   

4.
Novel A-ring analogues of the vitamin D receptor (VDR) antagonist (3a), ZK-159222, and its 24-epimer (3b) were convergently synthesized. Preparation of the CD-ring portions with the side chains of 3a,b, followed by palladium-catalyzed cross-coupling with the A-ring enyne precursors (15a,b), (3S,4S,5R)- and (3S,4S,5S)-bis[(tert-butyldimethylsilyl)oxy]-4-methyloct-1-en-7-yne, afforded the 2alpha-methyl-introduced analogues (4a,b) and their 3-epimers (5a,b). The biological profiles of the hybrid analogues were assessed in terms of affinity for VDR, and antagonistic activity to inhibit HL-60 cell differentiation induced by the natural hormone, 1alpha,25-dihydroxyvitamin D(3). The analogue 4a showed an approximately fivefold higher antagonistic activity compared with 3a. The 2alpha-methyl introduction into 3a increased the receptor affinity, thereby enhancing VDR antagonism. This approach to design potent antagonists based on hybridization of structural motifs in the A-ring and in the side chain may prove to be valuable.  相似文献   

5.
A series of N-methylbenzamide analogues (2-18) that is structurally derived from SR 48,968, a potent neurokinin-2 (NK(2)) receptor antagonist (pK(b)9.1), has been obtained using asymmetric synthesis. Isothiocyanato-N-methylbenzamide (10-12) and bromoacetamido-N-methylbenzamide derivatives (16-18) have been designed to serve as potential electrophilic affinity labels. Nitro-N-methylbenzamide (4-6) and acetamido-N-methylbenzamide (13-15) were designed to serve as the nonelectrophilic controls for these ligands. Functional assay results using guinea pig trachea indicate that electrophilic N-methylbenzamide analogues exhibit potent but surmountable NK(2) receptor antagonist activity. Several members of this series (2, 3, 7-9) exhibit potent NK(2) receptor antagonist potencies with pK(b) values in the range of 9.1-9.7. para-Fluoro substituted analogue 3 was found to be highly potent with a pK(b) of 9.7.  相似文献   

6.
The Z- and E-thymine and cytosine pronucleotides 3d, 4d, 3e, and 4e of methylenecyclopropane nucleosides analogues were synthesized, evaluated for their antiviral activity against human cytomegalovirus (HCMV), herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), human immunodeficiency virus type 1 (HSV-1), and hepatitis B virus (HBV) and their potency was compared with the parent compounds 1d, 2d, 1e, and 2e. Prodrugs 3d and 4d were obtained by phosphorylation of parent analogues 1d or 2d with reagent 8. A similar phosphorylation of N4-benzoylcytosine methylenecyclopropanes 9a and 9b gave intermediates 11a and 11b. Deprotection with hydrazine in pyridine-acetic acid gave pronucleotides 3e and 4e. The Z-cytosine analogue 3e was active against HCMV and EBV The cytosine E-isomer 4e was moderately effective against EBV.  相似文献   

7.
The 3'-C-branched-adenosine and 2'-deoxyadenosine analogues 1-7 were tested as substrate of adenosine deaminase. The 9-(3'-C-ethynyl-beta-D-ribo-pentofuranosyl)adenine 1 and its 2'-deoxy analogue 7 were deaminated by the enzyme while the vinyl and ethyl derivatives 2 and 3 were not. The 9-(3'-C-branched-beta-D-xylo-pentofuranosyl)adenines 4-6 were deaminated by the deaminase.  相似文献   

8.
9.
10.
Eleven oxytocin analogues substituted in position 4, 5 or 9 by tetrazole analogues of amino acids were prepared using solid-phase peptide synthesis method and tested for rat uterotonic in vitro and pressor activities, as well as for their affinity to human oxytocin receptor. The tetrazolic group has been used as a bioisosteric substitution of carboxylic, ester or amide groups in structure-activity relationship studies of biologically active compounds. Replacement of the amide groups of Gln(4) and Asn(5) in oxytocin by tetrazole analogues of aspartic, glutamic and alpha-aminoadipic acids containing the tetrazole moiety in the side chains leads to analogues with decreased biological activities. Oxytocin analogues in which the glycine amide residue in position 9 was substituted by tetrazole analogues of glycine had diminished activities as well. The analysis of differences in rat uterotonic activity and in the affinity to human oxytocin receptors of analogues containing either an acidic 5-substituted tetrazolic group or a neutral 1,5- or 2,5-tetrazole nucleus makes it possible to draw some new conclusions concerning the role of the amide group of amino acids in positions 4, 5 and 9 of oxytocin for its activity. The data suggest that the interaction of the side chain of Gln(4) with the oxytocin receptor is influenced mainly by electronic effects and the hydrogen bonding capacity of the amide group. Steric effects of the side chain are minor. Substitution of Asn(5) by its tetrazole derivative gave an analogue of very low activity. The result suggests that in the interaction between the amide group of Asn(5) and the binding sites of oxytocic receptor hydrogen bonds are of less importance than the spatial requirements for this group.  相似文献   

11.
(1S,2R)-1-Phenyl-2-[(S)-1-aminopropyl]-N,N-diethylcyclopropanecarboxamide (PPDC, 4a), which is a conformationally restricted analogue of antidepressant milnacipran [(±)-1], is a new class of potent noncompetitive NMDA receptor antagonists. A series of PPDC analogues modified at the 1-phenyl moiety, that is, the analogue 6 lacking 1-phenyl group, the 1-(fluorophenyl) analogues 4b,c,d, the 1-(methylphenyl) analogues 4e–g and the 1-(naphthyl) analogues 4h,i were synthesized. Analogue 6, lacking the 1-phenyl group, was completely inactive showing that the aromatic moiety is essential for the NMDA receptor binding. Among the analogues synthesized, the 1-o-fluorophenyl and 1-m-fluorophenyl analogues 4b and 4c showed potent affinities for the NMDA receptor [IC50=0.16±0.001 μM (4b), 0.15±0.02 μM (4c)], which were improved to some extent compared to those of the parent compound PPDC (IC50=0.20±0.02 μM). On the other hand, compounds 4b and 4c showed none of the 5-HT-uptake inhibitory effect, while PPDC turned out to be a weak 5-HT-uptake inhibitor.  相似文献   

12.
Myrrhanones A (1) and B (2), isolated from the gum resin of Commiphora mukul, were reported to exhibit anticancer and anti-inflammatory activities. In view of their interesting skeletal features and biological activities they have been chemically modified by exploiting their side chain functionalities to synthesise 29 diverse analogues. All the synthesized analogues were screened for their cytotoxic potential against a panel of five human cancer cell lines which include DU145 (Prostate), HT-29 (Colon), MCF-7 (Breast), Hela (Cervical) and U87MG (Glioblastoma) along with a normal cell line (L132). The synthesized analogues were also screened for anti-inflammatory activity against TNF-α and IL-1β using LPS induced inflammation model employing U937 cells. The biological screening results revealed that compounds 4b (piperidine analogue), 9d (linear aliphatic four member amide analogue) and 9i (N-methyl piperazine analogue) displayed significant cytotoxic activity against MCF-7, HT-29 and DU145 [IC50 (μM): 4.65 ± 1.28, 5.48 ± 0.13 and 6.63 ± 1.39] respectively. These analogues were further taken up for apoptotic assay, which confirmed that compounds 4b, 9d and 9i induced apoptosis in MCF-7, HT-29, DU145 cells and arrested in G0/G1 phase. Further, compounds 9c and 9g found to exhibit good anti-inflammatory activity against TNF-α with IC50 (μM) values of 10.02 ± 2.13 and 10.53 ± 0.48 respectively, while compound 2 exhibited strong inhibitory activity against both TNF-α (IC50: 9.39 ± 0.44 μM) and IL-1β (IC50: 12.15 ± 1.36 μM).  相似文献   

13.
To investigate structure-activity relationships of the 9,10-acetal-9beta-dihydro taxoids, we modified the 7-hydroxyl groups of the 9,10-acetonide-3'-(4-pyridyl) analogue to deoxy, methoxy, alpha-F, and 7beta,8beta-methano group. As a result of this study, we found that the 7-deoxy analogue was the strongest among these analogues. In addition, we found that the 7-deoxy-3'-(4-pyridyl) and 7-deoxy-3'-(2-pyridyl) analogues showed stronger activity against cell lines expressing P-glycoprotein than the corresponding 3'-phenyl analogue.  相似文献   

14.
Sterical constraints of the 9-methyl-binding pocket of the rhodopsin chromophore are probed using retinal analogues carrying substituents of increasing size at the 9 position (H, F, Cl, Br, CH(3), and I). The corresponding 11-Z retinals were employed to investigate formation of photosensitive pigment, and the primary photoproduct was identified by Fourier transform infrared difference spectroscopy. In addition, any effects of cumulative strain were studied by introduction of the 9-Z configuration and/or the alpha-retinal ring structure.Our results show that the 9-F analogue still can escape from the 9-methyl-binding pocket and that its photochemistry behaves very similar to the 9-demethyl analogue. The 9-Cl and 9-Br analogues behave very similar to the native 9-methyl pigments, but the 9-I retinal does not fit very well and shows poor pigment formation. This puts an upper limit on the radial dimension of the 9-methyl pocket at 0.45-0.50 nm. Introduction of the alpha-retinal ring constraint in the 11-Z series results in cumulative strain, because the 9-I and 9-Br derivatives cannot bind to generate a photopigment. The 9-Z configuration can partially compensate for the additional alpha-retinal strain. The corresponding 9-Br analogue does form a photopigment, and the other derivatives give increased photopigment yields compared to the corresponding 11-Z derivatives. In fact, 9-Z-alpha-retinal would be an interesting candidate for retinal supplementation studies. Our data provide direct support for the concept that the 9-methyl group is an important determinant in ligand anchoring and activation of the protein and in general agree with a three-point interaction model involving the ring, 9-methyl group, and aldehyde function.  相似文献   

15.
All four possible A-ring stereoisomers of 2,2-dimethyl-1,25-dihydroxyvitamin D(3) (4) were designed and convergently synthesized. Nine-step conversion of methyl hydroxypivalate 6 provided the desired A-ring enyne synthon (13a,b) in good overall yield. Cross-coupling reaction of the A-ring synthon 13a,b with the CD-ring portion in the presence of palladium catalyst, followed by deprotection, gave the vitamin analogues (4a-d). We also synthesized four stereoisomers of 2,2-ethano-1,25-dihydroxyvitamin D(3) (5), as novel spiro-ring analogues having cyclopropane fused at the C2 position. Biological potencies of the synthesized compounds were assessed in terms of the vitamin D receptor (VDR) binding affinity, as well as the HL-60 cell differentiation-inducing activity. The 2,2-ethano analogue 5a showed a comparable activity to the natural hormone 1, while the 2,2-dimethyl analogue 4a exhibited one-third of the activity of 1 in cell differentiation, with the reduced VDR binding affinity.  相似文献   

16.
Homocamptothecin (hCPT) is an E‐ring modified camptothecin (CPT) analogue, which showed pronounced inhibitory activity of topoisomerase I. In search of novel hCPT‐type anticancer agents, two series of hCPT derivatives were synthesized and evaluated in vitro against three human tumor cell lines. The results indicated that the 10‐substituted hCPT derivatives had a considerably higher cytotoxic activity than the 12‐substituted ones. Among the 10‐substituted compounds, 8a, 8b, 9b , and 9i showed an equivalent or even more potent activity than the positive control drug topotecan against the lung cancer cell line A‐549. Moreover, the hCPT analogues 8a and 8b exhibited a higher topoisomerase I inhibitory activity than CPT at a concentration of 100 μM .  相似文献   

17.
Each of the last 6 peptide bonds in the COOH terminus of [Leu11]substance P [( Leu11]SP) and [Nle11]spantide were replaced with [CH2NH], and each analogue was tested for SP agonist or antagonist activity by determining its ability to interact with SP receptors on dispersed acini from guinea pig pancreas. Each of the 6 spantide and 5 of the 6 SP analogues had no agonist activity, whereas [psi 9-10]SP was an agonist. For the spantide pseudopeptides, the psi 10-11 analogue (Ki,2.8 microM) was equipotent as an antagonist to spantide itself, whereas the psi 9-10, psi 8-9, psi 7-8, and psi 6-7 analogues were 2.5, 7, 5, and 3 times less potent. For the SP pseudopeptides, the psi 10-11 analogue was the most potent antagonist (Ki, 6.2 microM), whereas the psi 8-9, psi 7-8, and psi 6-7 analogues were 7-, 36-, and 39-fold less potent. There was a close correlation between the ability of each pseudopeptide to inhibit binding of 125I-Bolton-Hunter-SP and to affect amylase secretion. [psi 10-11]SP inhibited SP-stimulated amylase release in a competitive manner, and its inhibitory ability was specific for the SP receptor. Despite [psi 10-11]SP, spantide, and [psi 10-11]spantide having similar affinities for the SP receptor (Ki, 2-6 microM), for inhibition of binding of 125I-[Tyr4]bombesin, the analogues differed with [psi 10-11]SP having a 50-fold lower affinity than for the SP receptor, whereas [psi 10-11]spantide had a 4-fold lower affinity and spantide a 1.5-fold lower affinity for the SP receptor. These results demonstrate that SP pseudopeptides represent a new class of SP receptor antagonists and, in contrast to the currently described SP receptor antagonists, are more specific for SP receptors.  相似文献   

18.
The synthesis, purification, and characterization of biotinylated analogues of parathyroid hormone (PTH) and PTH-related protein (PTHrP) are described. A novel methodology was developed which allowed the selective biotinylation during solid-phase synthesis of either the Lys13 or Lys26 residue in PTH/PTHrP sequences. Incorporation of orthogonally protected N alpha-Boc-Lys(N epsilon-Fmoc) at a selected position in the sequence, followed by selective side-chain deprotection and biotinylation of the epsilon-amino group, permitted modification of the specific lysine only. Biotinylated analogues of [Nle8,18,Tyr34]bPTH(1-34)NH2 (analogue 1a) were prepared by modification of Lys13 with a biotinyl group (analogue 1) or a biotinyl-epsilon-aminohexanoyl group (analogue 2) or at Lys26 with a biotinyl-epsilon-aminohexanoyl group (analogue 3). A biotinylated PTHrP antagonist [Leu11,D-Trp12,Lys13(N epsilon-(biotinyl-beta-Ala))]PTHrP(7-34)NH2 (analogue 5), was also prepared. In a different synthetic approach, selective modification of the thiol group of [Cys35]PTHrP(1-35)NH2, in solution, with N-biotinyl-N'-(6-maleimidohexanoyl)hydrazide, resulted in analogue 4. The high affinities of the biotinylated analogues for PTH receptors present in human osteosarcoma B-10 cells or in porcine renal cortical membranes (PRCM), were comparable to those of the underivatized parent peptides. The analogues were also highly potent in stimulation of cAMP formation (analogues 1-4) or inhibition of PTH-stimulated adenylyl cyclase (analogue 5) in B-10 cells. The most potent analogue (analogue 1) had potencies in B-10 cells (Kb = 1.5 nM, Km = 0.35 nM) and in porcine renal membranes (Kb = 0.70 nM) identical or similar to those of its parent peptide, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
To probe the importance of a proposed β-turn within residues S9-R12 of PACAP for recognition by VIP/PACAP receptors, compounds 1 and 2, two conformationally restricted analogues of PACAP27 incorporating respectively (S)- or (R)-IBTM as type II or II′ β-turn dipeptide mimetic at the Y10-S11 position, were synthesized. According to 1H NMR conformational analyses in aqueous solution and 30% TFE, both PACAP27 and the [S-IBTM10,11]PACAP27 analogue 1 adopt similar ordered structures. PACAP27 shows an N-terminal disordered region (residues H1-F6) and an -helical conformation within segment T7–L27. For residues S9–R12, our data seem more compatible with a segment of the -helix than with the β-turn previously proposed for this fragment. In compound 1 the -helix, also spanning T7–L27 residues, appears slightly distorted at the N-terminus relative to the native peptide. Although this distortion could lead to the marked decrease in binding affinity of this compound at the VIP/PACAP receptors, the lack of the Y10 side chain in analogues 1 and 2 could also significantly affect the binding of these compounds.  相似文献   

20.
Ursolic acid (UA) is a naturally bioactive compound that possesses potential anti-diabetic activity. The relatively safe and effective molecule intrigued us to further explore and to improve its anti-diabetic activity. In the present study, a series of novel UA analogues was synthesized and their structures were characterized. Their bioactivities against the α-glucosidase from baker''s yeast were determined in vitro. The results suggested that most of the analogues exhibited significant inhibitory activity, especially analogues 8b and 9b with the IC50 values of 1.27 ± 0.27 μM (8b) and 1.28 ± 0.27 μM (9b), which were lower than the other analogues and the positive control. The molecular docking and 2D-QSAR studies were carried out to prove that the C-3 hydroxyl could interact with the hydrophobic region of the active pocket and form hydrogen bonds to increase the binding affinity of ligand and the homology modelling protein. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from UA analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号