首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single shelled lecithin vesicles of uniform size (diameter = 300 A) are prepared without sonication by solubilizing unsonicated lecithin dispersions with sodium cholate and removing the detergent from the mixed lecithin - cholate micelles by gel filtration on Sephadex G-50. A homogeneous population of pure lecithin single-bilayer vesicles free of multilamellar structures is obtained. The vesicle diameter is somewhat larger than the average diameter of sonicated vesicles. The curvature of the bilayer seems to be sufficiently large to allow for similar packing densities (areas/molecule) on the outer and inner layer of the bilayer. The morphology and some physico-chemical properties of these vesicles are described and compared with those of sonicated vesicles.  相似文献   

2.
Depending on their phospholipid composition, liposomes are endocytosed by, or fuse with, the plasma membrane, of Acanthamoeba castellanii. Unilamellar egg lecithin vesicles are endocytosed by amoeba at 28 degrees C with equal uptake of the phospholipid bilayer and the contents of the internal aqueous space of the vesicles. Uptake is inhibited almost completely by incubation at 4 degrees C or in the presence of dinitrophenol. After uptake at 28 degrees C, the vesicle phospholipid can be visualized by electron microscope autoradiography within cytoplasmic vacuoles. In contrast, uptake of unilamellar dipalmitoyl lecithin vesicles and multilamellar dipalmitoyl lecithin liposomes is only partially inhibited at 4 degrees C, by dinitrophenol and by prior fixation of the amoebae with glutaraldehyde, each of which inhibits pinocytosis. Vesicle contents are taken up only about 40% as well as the phospholipid bilayer. Electron micrographs are compatible with the interpretation that dipalmitoyl lecithin vesicles fuse with the amoeba plasma membrane, adding their phospholipid to the cell surface, while their contents enter the cell cytoplasm. Dimyristoyl lecithin vesicles behave like egg lecithin vesicles while distearoyl lecithin vesicles behave like dipalmitoyl lecithin vesicles.  相似文献   

3.
N E Gabriel  M F Roberts 《Biochemistry》1986,25(10):2812-2821
Stable unilamellar vesicles formed spontaneously upon mixing aqueous suspensions of long-chain phospholipid (synthetic, saturated, and naturally occurring phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin) with small amounts of short-chain lecithin (fatty acid chain lengths of 6-8 carbons) have been characterized by using NMR spectroscopy, negative staining electron microscopy, differential scanning calorimetry, and Fourier transform infrared (FTIR) spectroscopy. This method of vesicle preparation can produce bilayer vesicles spanning the size range 100 to greater than 1000 A. The combination of short-chain lecithin and long-chain lecithin in its gel state at room temperature produces relatively small unilamellar vesicles, while using long-chain lecithin in its liquid-crystalline state produces large unilamellar vesicles. The length of the short-chain lecithin does not affect the size distribution of the vesicles as much as the ratio of short-chain to long-chain components. In general, additional short-chain decreases the average vesicle size. Incorporation of cholesterol can affect vesicle size, with the solubility limit of cholesterol in short-chain lecithin micelles governing any size change. If the amount of cholesterol is below the solubility limit of micellar short-chain lecithin, then the addition of cholesterol to the vesicle bilayer has no effect on the vesicle size; if more cholesterol is added, particle growth is observed. Vesicles formed with a saturated long-chain lecithin and short-chain species exhibit similar phase transition behavior and enthalpy values to small unilamellar vesicles of the pure long-chain lecithin prepared by sonication. As the size of the short-chain/long-chain vesicles decreases, the phase transition temperature decreases to temperatures observed for sonicated unilamellar vesicles. FTIR spectroscopy confirms that the incorporation of the short-chain lipid in the vesicle bilayer does not drastically alter the gauche bond conformation of the long-chain lipids (i.e., their transness in the gel state and the presence of multiple gauche bonds in the liquid-crystalline state).  相似文献   

4.
M Ueno  C Tanford  J A Reynolds 《Biochemistry》1984,23(13):3070-3076
The method developed previously for formation of unilamellar vesicles from mixed micelles of egg lecithin and octyl glucoside [Mimms, L. T., Zampighi, G., Nozaki, Y., Tanford, C., & Reynolds, J. A. (1981) Biochemistry 20, 833-840] has been extended to allow for (1) use of nonionic detergents with much lower critical micelle concentrations and (2) variation in the time course of detergent removal. The results demonstrate the importance of kinetic factors, especially in the determination of vesicle size: initially formed vesicles are small, but the size increases slowly thereafter if detergent is not removed too quickly. Vesicle size remains fixed when the molar detergent/lipid ratio falls below about 1/1, and detergent removal becomes increasingly difficult thereafter, presumably because flip-flop of detergent from the inner to the outer leaflet of the bilayer membrane is very slow. Residual detergent (to about 25 mol %) has surprisingly little effect on anion permeability but increases cation permeability to the point where the normal discrimination between anions and cations (in pure lipid vesicles) is lost. Detergent added to initially detergent-free vesicles readily partitions into vesicular membranes (presumably only into the outer leaflet) and has a qualitatively similar effect on permeability. Vesicles produced by this method, regardless of residual detergent level, were found to be predominantly unilamellar: no multilamellar liposomes or other lipid aggregates could be detected within the accuracy of the methods employed.  相似文献   

5.
Phospholipid vesicles were prepared by detergent removal using hydrophobic porous beads, Amberlite XAD-2, or dialysis from detergent-phospholipid mixed micelles. The liposomes formed were found to be mostly unilammellar vesicles. The vesicle diameter was estimated, by both quasi-elastic light-scattering and gel-exclusion chromatography on Sephacryl S-1000, to be 80 nm for the vesicles formed by removal of octaethylene glycol monododecyl ether by the bead method. The effect of detergents within a bilayer on ion permeation was demonstrated. When the content of octaethylene glycol monododecyl ether reached a molar ratio of 0.2, the intrinsic ion selectivity of the phospholipid membrane between anion and cation was diminished. The ion permeability measured for vesicles with detergent incorporated into initially detergent-free vesicles was about 10-times greater than that for vesicles with detergent remaining following the process of detergent removal. This observation was explained by the different disposition of the detergent in the bilayer, that is, when vesicles were formed by the removal of detergent from mixed micelles, the residual detergent became distributed in both the outer and inner leaflets, and when the detergent was incorporated into initially detergent-free vesicles, the detergent became distributed only in the outer leaflet within the experimental time limits. This idea was supported by the NMR studies. It was also found that, as a detergent, octaethylene glycol monododecyl ether has a stronger effect on ion permeation than octyl glucoside.  相似文献   

6.
The interaction of the polyene antibiotics, amphotericin B, nystatin and filipin with cholesterol-containing single bilayer lipid vesicles has been characterized using gel permeation chromatography and proton magnetic resonance. All three antibiotics bind to vesicles at low concentrations without causing a large amount of vesicle destruction. The strength of binding as determined by gel permeation studies is greater for filipin and amphotericin than for nystatin. Nystatin and amphotericin B at these low concentrations induce a rapid loss of internal vesicle contents consistents consistent with pore formation. Filipin induces no leakage beyond that expected from partial vesicle destruction or general detergent action. At antibiotic levels above 1:1 antibiotic: cholesterol ratios the NMR results show all three antibiotics to cause extensive vesicle destruction. The onset of this behavior, which appears to be independent of the total antibiotic concentraion, indicates a well defined antibiotic : cholesterol interaction stoichiometry. Despite the fact that cholesterol is required for antibiotic activity, the NMR spectra prior to vesicle destruction show no changes indicative of an antibiotic-induced reversal of cholesterol restriction of phosphatidylcholine mobility. The contrast with polyene antibiotic behavior in more extended bilayers is discussed.  相似文献   

7.
The interaction of the polyene antibiotics, amphotericin B, nystatin and filipin with cholesterol-containing single bilayer lipid vesicles has been characterized using gel permeation chromatography and proton magnetic resonance. All three antibiotics bind to vesicles at low concentrations without causing a large amount of vesicle destruction. The strength of binding as determined by gel permeation studies is greater for filipin and amphotericin than for nystatin. Nystatin and amphotericin B at these low concentrations induce a rapid loss of internal vesicle contents consistent with pore formation. Filipin induces no leakage beyond that expected from partial vesicle destruction or general detergent action.At antibiotic levels above 1 : 1 antibiotic : cholesterol ratios the NMR results show all three antibiotics to cause extensive vesicle destruction. The onset of this behavior, which appears to be independent of the total antibiotic concentration, indicates a well defined antibiotic : cholesterol interaction stoichiometry. Despite the fact that cholesterol is required for antibiotic activity, the NMR spectra prior to vesicle destruction show no changes indicative of an antibiotic-induced reversal of cholesterol restriction of phosphatidylcholine mobility. The contrast with polyene antibiotic behavior in more extended bilayers is discussed.  相似文献   

8.
A novel method has been developed for the study of phospholipid exchange and fusion of phospholipid vesicles. Two homogeneous populations of single bilayer phosphatidylcholine vesicles of similar size but markedly different density have been prepared. /ldDense/rd vesicles were made from brominated dioleoyl phosphatidylcholine. /ldLight/rd vesicles were prepared from dioleoyl phosphatidylcholine. The two populations were easily separated by density gradient centrifugation. Phosphatidylcholine exchange protein from beef liver was used to promote lecithin exchange between the vesicle populations. Only the lecithin of the external monolayers of the vesicles was available for exchange by exchange protein, implying that flip-flop of vesicle phosphatidylcholine did not take place at a detectable frequency. No spontaneous intervesicle phosphatidylcholine exchange was observed. However, the dense and light vesicles did spontaneously fuse, over several hours, to produce particles of hybrid density.  相似文献   

9.
N A Dencher 《Biochemistry》1986,25(5):1195-1200
Functional reconstitution of the membrane protein bacteriorhodopsin into lipid vesicles is achieved by mixing aqueous suspensions of long-chain lecithins and purple membrane with the short-chain lecithin diheptanoylphosphatidylcholine (20 mol % of total lipid). The membrane protein is transmembranously inserted in the lipid bilayer of the vesicle and highly active as a light-energized proton pump. This rapid, easy, and gentle procedure might allow functional reconstitution of other membrane systems and isolated membrane proteins as well.  相似文献   

10.
Cytochrome b5, isolated from rabbit liver by a procedure using detergent, was incubated with phosphatidylcholine bilayer vesicles at 37 degrees for 30 min. A comparison of a number of physical properties was made between the cytochrome b5-phosphatidylcholine complex (at a molar ratio of 1:1000) and the phosphatidylcholine vesicles. The binding of the protein to the vesicle caused no aggregation and no detectable change in Stokes radius of the vesicle as monitored by gel filtration. Only small increases in s20 (from 2.67 up to 3.82 X 10(-13) s) and density (from 1.025 up to 1.042 g ml(-1)) were observed upon binding of the cytochrome b5 to phosphatidylcholine vesicles. At molar ratios of 5:1000, and above, two types of complexes could be detected by sucrose density gradient centrifugation: one had a molar ratio of approximately 1.066 g ml(-1)) the other, a more constant ratio of 20:1000 (density greater than 1.107 g ml(-1)). Cytochrome b5 was also incubated with phosphatidylcholine vesicles prepared with ferricyanide trapped inside. The leakage of the ferricyanide from inside the vesicles was increased when cytochrome b5 was present, but the vesicles, although leaking, were not completely depleted of their ferricyande, and so must still be intact. It is suggested that at molar ratios of cytochrome b5 to phosphatidylcholine below 5:1000, the binding of the protein causes minimal change in vesicle structure.  相似文献   

11.
Multinuclear (1H and 31P) nuclear magnetic resonance (NMR) spectroscopy and quasi-elastic light scattering have been used to characterize molecular aggregates formed in dilute sodium taurocholate--egg lecithin solutions. When mixed micelles (1.25 g/dL) are diluted with 150 mM aqueous sodium chloride, light-scattering measurements suggest a transformation from mixed micelles to unilamellar vesicle species. Decreased 1H NMR line widths for bile salt resonances are consistent with predominance of a monomer form. The concurrent appearance of a second phospholipid choline methyl resonance indicates two types of phospholipid environment in slow chemical exchange: this behavior is consistent with small unilamellar vesicles. The appearance of bilayer vesicles in dilute model bile solutions is confirmed by addition of a lanthanide shift reagent (Pr3+), which splits the 1H or 31P head-group peak into two components with distinct chemical shift sensitivities. These mixed micelle and vesicle aggregates are also distinguished by their susceptibility to the lipolytic enzyme phospholipase A2 from cobra venom.  相似文献   

12.
The regulation of lecithin:cholesterol acyltransferase by changes in phospholipid bilayer fluidity was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity of dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles was decreased by the addition of up to 20% (mol/mol) cholesterol and increased by the addition of up to 10% (mol/mol) lysoDMPC. When both cholesterol and lysoDMPC are present in the bilayer, their individual effects on fluidity are altered. These changes can be explained by complex formation between cholesterol and phospholipid as in the model of Presti et al. (Presti, F.C., Pace, R.J. and Chan, S.I. (1982) Biochemistry 21, 3831-3335). Lecithin:cholesterol acyltransferase activity with these vesicles as substrates was measured to determine whether activity can be modulated by the fluidity changes of the bilayer on which the enzyme acts. When 10% lysoDMPC, a known lecithin:cholesterol acyltransferase inhibitor, is added to the vesicles, inhibition of activity is observed. When 7.5% lysoDMPC is added to vesicles which contain either 5 or 10% cholesterol, lecithin:cholesterol acyltransferase activity increases. This increase in lecithin:cholesterol acyltransferase activity due to vesicle-fluidity increase is sufficient to overcome the decrease in activity due to lecithin:cholesterol acyltransferase inhibition. This is the first report of the ability of lysoDMPC to increase lecithin:cholesterol acyltransferase activity.  相似文献   

13.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 mumol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

14.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 μmol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

15.
Thermoelasticity of large lecithin bilayer vesicles.   总被引:20,自引:13,他引:7       下载免费PDF全文
Micromechanical experiments on large lecithin bilayer vesicles as a function of temperature have demonstrated an essential feature of bilayer vesicles as closed systems: the bilayer can exist in a tension-free state (within the limits of experimental resolution, i.e., less than 10(-2) dyn/cm). Furthermore, because of the fixed internal volume, there is a critical temperature at which the vesicle becomes a tension-free sphere. Below this temperature, thermoelastic tension builds up in the membrane and the vesicle's internal pressure increases while the surface area remains constant. Above this temperature, the vesicle's surface area increases while the tension and internal pressure are negligible. Without mechanical support, the vesicles fragment into small vesicles because they have insufficient surface rigidity. In the upper temperature range we have measured the increase of surface area with temperature. These data established the thermal area expansivity to be 2.4 X 10(-3)/degrees C. At constant temperature, we used either pipet aspiration with suction pressures up to 10(4) dyn/cm2 or compression against a flat surface with forces up to 10(-2) dyn to produce area dilation of the vesicle surface on the order of 1%. The rate of increase of membrane tension with area dilation was calculated, which established the elastic area compressibility modulus to be 140 dyn/cm. The tension limit that produced lysis was observed to be 3-4 dyn/cm (equivalent to 2-3% area increase). The product of the elastic area compressibility modulus, the thermal area expansivity, and the temperature gives the reversible heat of expansion at constant temperature for the bilayer. This value is 100 ergs/cm2 at 25 degrees C, or approximately 5 kcal/mol of lecithin. Similarly, the product of the thermal area expansivity multiplied by the area compressibility modulus determines the rate of increase of thermoelastic tension with decrease in temperature when the area is held constant, i.e., -0.34 dyn/cm/degrees C.  相似文献   

16.
Effects of paramagnetic shift reagents on the 13C NMR spectra obtained from single-walled vesicle dispersions of egg phosphatidylcholine enriched with 13C in the N-methyl carbons are investigated. Spectra obtained at 25.1 MHz show that, at Yb3+ to phospholipid molar ratios as low as 0.06, complete resolution of the N-methyl carbon resonances is obtained from molecules on the inner and outer faces of the vesicle bilayer. No precipitation of the vesicles is caused by Yb3+ at these concentrations nor is appreciable line broadening observed. Other paramagnetic shift reagents frequently used in proton NMR investigations of phosphatidylcholine vesicles do not give complete separation of the N-methyl 13C signals from the two bilayer surfaces. K3Fe(CN)b,Eu3+, and Pr3+ cause precipitation of the phosphatidylcholine vesicles at concentrations, which give only incomplete resolution of these signals. T1 measurements of the resonances separated by Yb3+ indicate that the choline groups on the inner bilayer surface are less mobile than are the same groups in the outer surface. Gated proton decoupling measurements, which show that the nuclear Overhauser effect is 2.8 +/- 0.1, indicate that the dominant mode of relaxation is dipolar interaction.  相似文献   

17.
Vesicle <--> micelle transitions are important phenomena during bile formation and intestinal lipid processing. The hepatocyte canalicular membrane outer leaflet contains appreciable amounts of phosphatidylcholine (PC) and sphingomyelin (SM), and both phospholipids are found in the human diet. Dietary SM enrichment inhibits intestinal cholesterol absorption. We therefore studied detergent-induced vesicle --> micelle transitions in SM-PC vesicles. Phase transitions were evaluated by spectrophotometry and cryotransmission electron microscopy (cryo-TEM) after addition of taurocholate (3-7 mM) to SM-PC vesicles (4 mM phospholipid, SM/PC 40%/60%, without or with 1.6 mM cholesterol). After addition of excess (5-7 mM) taurocholate, SM-PC vesicles were more sensitive to micellization than PC vesicles. As shown by sequential cryo-TEM, addition of equimolar (4 mM) taurocholate to SM-PC vesicles induced formation of open vesicles, then (at the absorbance peak) fusion of bilayer fragments into large open structures (around 200 nm diameter) coexisting with some multilamellar or fused vesicles and thread-like micelles and, finally, transformation into an uniform picture with long thread-like micelles. Incorporation of cholesterol in the SM/PC bilayer changed initial vesicular shape from spherical into ellipsoid and profoundly increased detergent resistance. Disk-like micelles and multilamellar vesicles, and then extremely large vesicular structures, were observed by sequential cryo-TEM under these circumstances, with persistently increased absorbance values by spectrophotometry. These findings may be relevant for bile formation and intestinal lipid processing. Inhibition of intestinal cholesterol absorption by dietary SM enrichment may relate to high resistance against bile salt-induced micellization of intestinal lipids in presence of the sphingolipid.  相似文献   

18.
The regulation of human plasma lecithin:cholesterol acyltransferase (LCAT) by changes in bilayer fluidity of substrate egg phosphatidylcholine (egg PC) unilamellar vesicles was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity was decreased by adding up to 20% cholesterol or increased by adding up to 10% egg 2-lysophosphatidylcholine (lysoPC). The fluidizing effect of lysoPC was suppressed by the addition of cholesterol. LCAT activity with 10% cholesterol vesicles was decreased by adding 5% lysoPC, yet activity with 5% cholesterol vesicles was unaffected by adding 5% lysoPC. This difference may be explained by a balance between the known LCAT inhibitory effect of lysoPC and its ability to increase bilayer fluidity and thereby increase LCAT activity. LCAT esterification of up to 37% of vesicle cholesterol failed to alter the lysoPC/cholesterol balance sufficiently to influence activity in this system. The findings of our studies are in keeping with modulation of LCAT activity by bilayer fluidity, but fluidity changes caused by enzyme action are not sufficient to regulate that activity.  相似文献   

19.
The binding of the chloroplast coupling factor CF to lipid vesicles was analyzed by gel filtration. CF can be bound to vesicles made of chloroplast lipids but not of lecithin. The presence in the vesicle walls of a proteolipid subunit of the hydrophobic component of the coupling factor increases the binding of CF. The apparent binding constant and the maximum protein/lipid ratio are calculated. The Ca2+-ATPase activity of bound CF is markedly lower than that of dissolved CF. It is confirmed that the proteolipid is a N,N'-dicyclohexylcarbodiimide sensitive proton channel. The binding of CF on proteolipid vesicles decreases their proton permeability.  相似文献   

20.
Abstract

Soybean lecithin disperses into water forming multilamellar liposomes, which on sonication produce vesicles of the order of 40–50nm (diameter), as determined by Photon Correlation Spectroscopy (PCS). The effect of concentration of lecithin and sonication time was systematically investigated. Vesicles were then prepared by incorporation of A – B – A block copolymers of polyethylene oxide (PEO) and polypropylene oxide(PPO), i.e.(PEO-PPO-PEO), in order to construct systems of increased steric stability. The effect of the molecular weight of the PEO and PPO chains on the vesicle size was systematically studied by using various molecules to prepare the vesicles. Initial addition of these (tri-)block copolymers causes an increase in the size of the vesicles. This increase continues until a certain concentration of block copolymer is reached, after which a decrease in size is observed. The initial increase was thought to be due to the incorporation of the block copolymer onto the vesicle bilayer. The reduction at high surfactant concentration is thought to be due to solubilization of the bilayer and the ultimate breakdown of the vesicles. Electrophoresis experiments showed a reduction in the ξ-potential of the vesicles on incorporation of the block copolymer which can be attributed to the shift of the shear plane. Various models are presented to describe this incorporation. The vesicles prepared using the block copolymers are believed to enhance the steric effects and so lead to more stable and pharmaceutically optimum systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号