首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Three-dimensional models of human alcohol dehydrogenase subunits have been constructed, based on the homologous horse enzyme, with computer graphics. All types of class I subunits (alpha, beta, and gamma) and the major allelic variants (beta 1/beta 2 and gamma 1/gamma 2) have been studied. Residue differences between the E-type subunit of the horse enzyme and any of the subunits of the human isozymes occur at 64 positions, about half of which are isozyme-specific. About two thirds of the substitutions are at the surface and all differences can be accommodated in highly conserved three-dimensional structures. The model of the gamma isozyme is most similar to the crystallographically analyzed horse liver E-type alcohol dehydrogenase, and has all the functional residues identical to those of the E subunit except for one which is slightly smaller: Val-141 in the substrate pocket. The residues involved in coenzyme binding are generally conserved between the horse enzyme and the alpha, beta, and gamma types of the human enzyme. In contrast, single exchanges of these residues are the ones involved in the major allelic differences (beta 1 versus beta 2 and gamma 1 versus gamma 2), which affects the overall rate of alcohol oxidation since NADH dissociation is the rate-determining step. Residue 47 is His in beta 2 and Arg in the beta 1, gamma 1, and gamma 2 subunits, and in horse liver alcohol dehydrogenase. Both His and Arg can make a hydrogen bond to a phosphate oxygen atom of NAD; hence the lower turnover rate of beta 1 apparently derives from a charge effect. The substitution to Gly in the alpha subunit results in one less hydrogen bond in NAD binding, and consequently in rapid dissociation. This may explain why the overall rate is an order of magnitude faster than that of beta 1. The important difference between gamma 1 and gamma 2 is an exchange at position 271 from Arg to Gln which can give a hydrogen bond from Gln in gamma 2 to the adenine of NAD. The tighter binding to gamma 2 can account for the slower overall catalytic rate in this isozyme. The kinetics and interactions of cyclohexanol and benzyl alcohol with the isozymes were judged by docking experiments using an interactive fitting program.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
W Maret 《Biochemistry》1989,28(26):9944-9949
The catalytic zinc atoms in class III (chi) alcohol dehydrogenase (ADH) and sorbitol dehydrogenase (SDH) from human liver have been specifically removed and replaced by cobalt(II) with a new ultrafiltration technique. The electronic absorption spectrum of class III cobalt ADH (epsiolon 638 = 870 M-1 cm-1) is nearly identical with those of active site substituted horse EE and human class I (beta 1 beta 1) cobalt ADH. Thus, the coordination environment of the catalytic metal is strictly conserved in these enzymes. However, significant differences are noted when the spectra of class III ADH-coenzyme complexes are compared to the corresponding spectra of the horse enzyme. The spectrum of class III ADH.NADH is split into three bands, centered at 680, 638, and 562 nm. The class III ADH.NAD+ species resembles the alkaline form of the corresponding horse enzyme complex but without exhibiting the pH dependence of the latter. These spectral changes underscore the role of the coenzymes in differentially fine tuning the catalytic metal for its particular function in each ADH. The noncatalytic zinc of class III ADH exchanges with cobalt at pH 7.0. While 9 residues out of 15 in the loop surrounding the noncatalytic zinc of class III ADH differ from those of the class I ADH, the electronic absorption spectra of cobalt in the noncatalytic metal site of class III ADH establish that the coordination environment of this site is conserved as well. The spectrum of cobalt SDH differs significantly from those of cobalt ADHs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Human liver alcohol dehydrogenase [alcohol:NAD+ oxidoreductase, EC 1.1.1.1 (ADH)] catalyzes the stereospecific oxidation of different 3 beta-hydroxy-5 beta-steroids with ranges of Km from 46 to 320 microM and values of kcat from 7.0 to 72 min-1, pH 8.5. Only the class I isozymes containing gamma-subunits, gamma 1 gamma 1, alpha gamma 1, beta 1 gamma 1, gamma 2 gamma 2, and beta 1 gamma 2, catalyze oxidation of these steroids with kcat/Km ratios 4-10-fold greater than those for ethanol. In marked contrast, class I alpha alpha, alpha beta 1, and beta 1 beta 1, class II, and class III isozymes do not oxidize 3 beta-hydroxy-5 beta-steroids though they readily oxidize ethanol. 1,10-Phenanthroline and 4-methylpyrazole competitively inhibit both alcohol dehydrogenase catalyzed ethanol and 3 beta-hydroxy-5 beta-steroid oxidation demonstrating that the catalysis of both types of substrates occurs at the same active site. The gamma-subunit-catalyzed oxidation of 3 beta-hydroxy-5 beta-steroids is the most specific catalytic function described thus far for any human liver alcohol dehydrogenase isozyme: there is no other isozyme that catalyzes this reaction. Testosterone, an allosteric inhibitor of ethanol oxidation specific for gamma-subunit-containing human liver ADH isozymes [M?rdh, G., Falchuk, K. H., Auld, D. S., & Vallee, B. L. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2836-2840], also noncompetitively inhibits gamma-subunit-catalyzed sterol oxidation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The human liver alpha alpha alcohol dehydrogenase exhibits a different substrate specificity and stereospecificity for secondary alcohols than the human beta 1 beta 1, and gamma 1 gamma 1 or horse liver alcohol dehydrogenases. All of the enzymes efficiently oxidize primary alcohols, but alpha alpha oxidizes secondary alcohols far more efficiently than human beta 1 beta 1 and gamma 1 gamma 1 or horse liver alcohol dehydrogenase. Specifically, alpha alpha oxidizes four- and five-carbon secondary alcohols with efficiencies 0.06-2.2 times that of primary homologs and oxidizes these secondary alcohols with efficiencies up to 3 orders of magnitude greater than those of the three other isoenzymes. Whereas the human beta 1 beta 1, gamma 1 gamma 1 and horse isoenzymes show a distinct preference toward (S)-(+)-3-methyl-2-butanol, the alpha alpha isoenzyme prefers (R)-(-)-3-methyl-2-butanol. Computer-simulated graphics demonstrate that the horse subunit accommodates (S)-(+)-3-methyl-2-butanol within the active site much better than the opposite stereoisomer, primarily due to steric hindrance caused by Phe-93. Human alpha may accommodate (R)-(-)-3-methyl-2-butanol better than (S)-(+)-3-methyl-2-butanol because of close contacts between the latter and Thr-48. These observations suggest that substitutions at positions 93 and 48 in the active site of human liver alcohol dehydrogenase isoenzymes may determine their substrate specificity for secondary alcohols.  相似文献   

5.
Insertion of nickel ions into the empty catalytic site of horse liver alcohol dehydrogenase yields an active enzyme with 65% metal substitution and about 12% intrinsic activity. The electronic absorption spectrum is characterized by bands at 357 nm (2900 M?1 cm?1, 407 nm (3500 M?1 cm?1), 505 nm (300 M?1 cm?1), 570 nm (?130 M?1 cm?1), and 680 nm (?80 M?1 cm?1). The absorption and CD spectra are similar to those of nickel(II) azurin and nickel(II) aspartate transcarbamoylase and prove coordination of the nickel(II) ions to sulfur in a distorted tetrahedral coordination geometry. Changes of the spectra upon ligand binding at the metal or conformation changes of the protein induced by coenzyme, or both, indicate alterations of the metal geometry.The chromophoric substrate trans-4-(N, N-dimethylamino)-cinnamaldehyde forms a ternary complex with Ni(II) liver alcohol dehydrogenase and the coenzyme analogue 1,4,5,6-tetrahydronicotinamide-adenine-dinucleotide, stable between pH 6 and 10. The corresponding ternary complex with NADH is only stable at pH > 9.0. The spectral redshifts induced in the substrate are 11 nm larger than those found in the zinc enzyme. We suggest direct coordination of the substrate to the catalytic metal ion which acts as a Lewis acid in both substrate coordination and catalysis.  相似文献   

6.
Determination of the amino acid sequence of the beta 1 subunit from the class I (pyrazole-sensitive) human liver alcohol dehydrogenase isoenzyme beta 1 beta 1 revealed a 373-residue structure differing at 48 positions (including a gap) from that of the subunit of the well studied horse liver alcohol dehydrogenase EE isoenzyme. The structure deduced is compatible with known differences in composition, ultraviolet absorbance, electrophoretic mobility and catalytic properties between the horse and human enzymes. All zinc-liganding residues of the horse E subunit are strictly conserved in the human beta 1 subunit, despite an earlier report of a mutation involving Cys-46. This residue therefore remains conserved in all known alcohol dehydrogenase structures. However, the total cysteine content of the beta 1 structure is raised from 14 in the subunit of the horse enzyme to 15 by a Tyr----Cys exchange. Most exchanges are on the surface of the molecule and of a well conserved nature. Substitutions close to the catalytic centre are of interest to explain the altered substrate specificity and different catalytic activity of the beta 1 homodimer. Functionally, a Ser----Thr exchange at position 48 appears to be of special importance, since Thr-48 in beta 1 instead of Ser-48 in the horse enzyme can restrict available space. Four other substitutions also line the active-site pocket, and appear to constitute partly compensated exchanges.  相似文献   

7.
The active site metal in horse liver alcohol dehydrogenase has been studied by metal-directed affinity labeling of the native zinc(II) enzyme and that substituted with cobalt(II) or cadmium(II). Reversible binding of bromoimidazolyl propionic acid to the cobalt enzyme blueshifts the visible absorption band originating from the catalytic cobalt atom at 655 to 630 nm. Binding of imidazole to the cobalt(II) enzyme redshifts the 655 nm band to 667 nm. Addition of bromoimidazolyl propionic acid blueshifts this 667 nm band back to 630 nm. This proves direct binding of the label to the active site metal in competition with imidazole. The affinity of the label for the reversible binding site in the three enzymes follows the order Zn ? Cd ? Co. After reversible complex formation, bromoimidazolyl propionic acid alkylates cysteine-46, one of the protein ligands to the active site metal. The nucleophilic reactivity of this metal-mercaptide bond in each reversible complex follows the order Co ? Zn ? Cd.  相似文献   

8.
Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (AHD), aldehyde reductase (AHR), aldehyde oxidase (AOX) and xanthine oxidase (XOX) extracted from horse tissues were examined. Five ADH isozymes were resolved: three corresponded to the previously reported class I ADHs (EE, ES and SS) (Theorell, 1969); a single form of class II ADH (designated ADH-C2) and of class III ADH (designated ADH-B2) were also observed. The latter isozyme was widely distributed in horse tissues whereas the other enzymes were found predominantly in liver. Four AHD isozymes were differentially distributed in subcellular preparations of horse liver: AHD-1 (large granules); AHD-3 (small granules); and AHD-2, AHD-4 (cytoplasm). AHD-1 was more widely distributed among the horse tissues examined. Liver represented the major source of activity for most AHDs. A single additional form of NADPH-dependent AHR activity (identified as hexonate dehydrogenase), other than the ADHs previously described, was observed in horse liver. Single forms of AOX and XOX were observed in horse tissue extracts, with highest activities in liver.  相似文献   

9.
The primary structure of the gamma 1 subunit of human liver alcohol dehydrogenase isoenzyme gamma 1 gamma 1 was deduced by characterization of 36 tryptic and 2 CNBr peptides. The polypeptide chain is composed of 373 amino acid residues. gamma 1 differs from the beta 1 subunit of human liver alcohol dehydrogenase at 21 positions, and from the E subunit of horse liver alcohol dehydrogenase at 43 positions including a gap at position 128 as in the beta 1 subunit. All zinc-liganding residues from the E subunit of the horse protein and the beta 1 subunit of the human enzyme are conserved, but like beta 1, gamma 1 also has an additional cysteine residue at position 286 (in the positional numbering system of the horse enzyme) due to a Tyr----Cys exchange. Most amino acid exchanges preserve the properties of the residues affected and are largely located on the surface of the molecules, away from the active site and the coenzyme binding region. However, eight positions with charge differences in relation to the E subunit of the horse enzyme are noticed. These result in a net positive charge increase of one in gamma 1 versus E, explaining the electrophoretic mobilities on starch gels. Of functional significance is the conservation of Ser-48 in gamma 1 relative to E. The residue is close to the active site but different (Thr-48) in the beta 1 subunit of the human enzyme. Thus, the closer structural relationship between human gamma 1 and horse E enzyme subunit than between beta 1 and E is also reflected in functionally important residues, explaining a greater similarity between gamma 1 gamma 1 and EE than between beta 1 beta 1 and EE.  相似文献   

10.
A sensitive and convenient method for the quantitative measurement of human alcohol dehydrogenase (ADH) isozymes based on enzyme-linked immunosorbent assay has been devised. The procedure was optimized with respect to antigen coating density, antiserum dilution, and incubation times with rabbit antisera raised against beta 1 beta 1-ADH to achieve a limit of sensitivity of 1 ng/ml for this isozyme when purified. Using the optimal conditions established, quantitative measurement of alpha beta 1, alpha gamma 1, beta 1 gamma 1, pi, and chi-ADH were obtained with antisera raised in rabbits toward these individual isozymes. The incorporation into the procedure of thimerosal (ethyl(4-mercaptobenzoato-S)mercury) or other sulfhydryl specific reagents improved the soluble phase antiserum avidity for all ADH isozymes, thereby increasing the sensitivity. Thimerosal is an absolute requirement for chi-ADH antigen-antibody binding. The polyclonal rabbit antisera elicited by the individual isozymes of the three classes of ADH exhibit a high degree of isozyme class specificity. Cross-reactivity of the antibodies with the beta 1 beta 1, alpha gamma 1, alpha gamma 2, alpha beta 1, beta 1 gamma 1, beta 1 gamma 2, pi and chi isozymes were evaluated. Antisera against the class I isozymes beta 1 beta 1 and beta 1 gamma 1 cross-react with all class I isozymes and with pi-ADH. Antibodies against pi and chi-ADH are selective and specific only for their respective antigens. Neither one cross-reacts with any class I isozyme. Conformational effects resulting from subunit interactions likely account for differences in cross-immunoreactivity between the closely homologous class I isozymes.  相似文献   

11.
Sulfur mustard is a chemical warfare agent that causes blistering of the skin and damages the eyes and airway after environmental exposure. We have previously reported that thiodiglycol (TDG, 2,2'-bis-thiodiethanol), the hydrolysis product of sulfur mustard, is oxidized by alcohol dehydrogenase (ADH) purified from horse liver or present in mouse liver and human skin cytosol. Humans express four functional classes of ADH composed of several different isozymes, which vary in their tissue distribution, some occurring in skin. To help us evaluate the potential contribution of the various human isozymes toward toxicity in skin and in other tissues, we have compared the catalytic activity of purified human class I alphaalpha-, beta1beta1-, beta2beta2-, and gamma1gamma1-ADH, class II pi-ADH, class III chi-ADH, and class IV sigma-ADH with respect to TDG oxidation and their relative sensitivities to inhibition by pyrazole. Specific activities toward TDG were 123, 79, 347, 647, and 12 nmol/min/mg for the class I alphaalpha-, beta1,beta1-, beta2beta2-, and gamma1gamma1-ADH and class II pi-ADH, respectively. TDG was not a substrate for class III chi-ADH. The specific activity of class IV sigma-ADH was estimated at about 1630 nmol/min/mg. 1 mM pyrazole, a potent inhibitor of class I ADH, inhibited the class I alphaalpha, beta1beta1, beta2beta2, and gamma1gamma1 ADH and class IV sigma-ADH by 83, 100, 56, 90, and 73%, respectively. The class I alphaalpha- and beta1beta1-ADH oxidized TDG with kcat/Km value of 7-8 mM(-1) min(-1), beta2beta2-ADH with a value 19 mM(-1) min(-1) and class I gamma1gamma1-ADH with a value of 176 mM(-1) min(-1). The kcat/Km value for class IV sigma-ADH was estimated at 4 mM(-1) min(-1). The activities of class IV sigma-ADH and class I gamma1gamma1-ADH are of significant interest because of their prevalence in eyes, lungs, stomach, and skin, all target organs of sulfur mustard toxicity.  相似文献   

12.
A three-dimensional model of yeast alcohol dehydrogenase, based on the homologous horse liver enzyme, was used to compare the substrate binding pockets of the three isozymes (I, II, and III) from Saccharomyces cerevisiae and the enzyme from Schizosaccharomyces pombe. Isozyme I and the S. pombe enzyme have methionine at position 294 (numbered as in the liver enzyme, corresponding to 270 in yeast), whereas isozymes II and III have leucine. Otherwise the active sites of the S. cerevisiae enzymes are the same. All four wild-type enzymes were produced from the cloned genes. In addition, oligonucleotide-directed mutagenesis was used to change Met-294 in alcohol dehydrogenase I to leucine. The mechanisms for all five enzymes were predominantly ordered with ethanol (but partially random with butanol) at pH 7.3 and 30 degrees C. The wild-type alcohol dehydrogenases and the leucine mutant had similar kinetic constants, except that isozyme II had 10-20-fold smaller Michaelis and inhibition constants for ethanol. Thus, residue 294 is not responsible for this difference. Apparently, substitutions outside of the substrate binding pocket indirectly affect the interactions of the alcohol dehydrogenases with ethanol. Nevertheless, the substitution of methionine with leucine in the substrate binding site of alcohol dehydrogenase I produced a 7-10-fold increase in reactivity (V/Km) with butanol, pentanol, and hexanol. The higher activity is due to tighter binding of the longer chain alcohols and to more rapid hydrogen transfer.  相似文献   

13.
W P Fong  W M Keung 《Biochemistry》1987,26(18):5726-5732
In order to gain a better understanding of the metabolism of ethanol in Orientals, the kinetic properties of human alcohol dehydrogenase (ADH) isozymes containing the beta 2 (Oriental) subunit, i.e., alpha beta 2, beta 2 gamma 1, beta 2 beta 2, beta 2 gamma 2, as well as gamma 1 gamma 1, were examined by using primary and secondary alcohol substrates of various chain lengths and compared with those of the corresponding beta 1 (Caucasian) subunit containing isozymes already on record [Wagner, F. W., Burger, A. R., & Vallee, B. L. (1983) Biochemistry 22, 1857-1863]. With primary alcohols, these isozymes follow typical Michaelis-Menten kinetics with a preference for long-chain alcohols, as indicated by Km and kcat/Km values. The kcat values obtained with primary alcohols, except methanol, do not vary greatly, i.e., less than 3-fold, whereas the corresponding Km values span a 3600-fold range, i.e., from 26 microM to 94 mM, indicating that the specificity of these isozymes manifests principally in substrate binding. As a consequence, ethanol--which might be thought to be the principal in vivo substrate for ADH--is oxidized rather poorly, i.e., from 50- to 90-fold less effectively than octanol. Secondary alcohol oxidation by the homodimers beta 2 beta 2 and gamma 1 gamma 1 also follows normal Michaelis-Menten kinetics. Again, values of Km and kcat/Km reveal that both isozymes prefer long carbon chains. For all secondary alcohols studied, the Km and kcat values for beta 2 beta 2 are much higher than those for gamma 1 gamma 1, i.e., 25- to 360-fold and 6- to 16-fold, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
W F Bosron  S J Yin  F E Dwulet  T K Li 《Biochemistry》1986,25(8):1876-1881
The beta 1 beta 1 and beta 2 beta 2 human liver alcohol dehydrogenase isoenzymes differ by only one residue at the coenzyme-binding site; Arg-47 in beta 1 is replaced by His in the beta 2 subunit. Since Arg-47 is thought to facilitate the carboxymethylation of Cys-46 in horse liver alcohol dehydrogenase by binding halo acids in a Michaelis-Menten complex prior to inactivation, the specificity and kinetics of modification of the two human liver beta beta isoenzymes with iodoacetate were compared. Both of the beta beta isoenzymes were inactivated by treatment with iodo[14C]acetate, and one Cys per subunit was carboxymethylated. Cys-174, which is a ligand to the active-site zinc atom in horse liver alcohol dehydrogenase, was selectively carboxymethylated in each of the human beta beta isoenzymes; less than 15% of the iodo[14C]acetate incorporated into the enzyme appeared in Cys-46. Therefore, the three-dimensional structure of the basic amino acids in the anion-binding site of the human beta beta isoenzymes appears to be different from that of horse liver alcohol dehydrogenase. The kinetics of alkylation are consistent with the formation of a Michaelis-Menten complex before inactivation of the isoenzymes. The average Ki values for iodoacetate were 10 and 16 mM for beta 1 beta 1 and beta 2 beta 2, respectively, and maximal rate constants for inactivation were 0.22 and 0.17 min-1, respectively. From these data, it can be concluded that there is a relatively minor effect of the substitution of His for Arg at position 47 on the kinetics of inactivation.  相似文献   

15.
We have purified ADHIV, a novel alcohol dehydrogenase (ADH) isozyme in the yeast Saccharomyces cerevisiae, after increasing the normally low amount of ADHIV protein in laboratory strains. This was done by overexpression of the structural gene (ADH4) on a 2micro-based multicopy vector. Characterization of the purified enzyme revealed a dimeric structure as well as a different substrate specificity and pH profile as compared to other alcohol dehydrogenase isozymes. On the other hand, we could demonstrate that ADHIV is activated by zinc ions, like the other yeast alcohol dehydrogenase isozymes, and not by ferrous ions, like a structurally similar alcohol dehydrogenase from the bacterium Zymomonas mobilis.  相似文献   

16.
A 23-residue peptide was synthesized that incorporates the loop which binds the structural zinc atom of mammalian alcohol dehydrogenases and contributes, in part, to subunit interactions in the native enzyme. Neither the amino acid composition nor the sequence of the peptide resemble those of zinc fingers. The reduced peptide stoichiometrically binds zinc or cobalt to form stable complexes with a dissociation constant of the peptide/CO2+ complex of 2.1 microM at pH 7.5. EDTA disrupts the complex. The absorption and magnetic circular dichroic spectra of the cobalt-peptide are indicative of a tetrahedral coordination geometry, and are similar to those of the cobalt-substituted structural site of horse and human (beta 1 beta 1) liver alcohol dehydrogenases. Consequently, the synthetic peptide can serve as a model for the metal-binding segment of alcohol dehydrogenase and for studies of fundamental problems concerning protein/metal interactions.  相似文献   

17.
《Inorganica chimica acta》1988,151(3):183-189
The noncatalytic zinc in horse liver alcohol dehydrogenase was selectively replaced by nickel(II). This novel species, Zn(c)2Ni(n)24 horse liver alcohol dehydrogenase (where c denotes the catalytic and n denotes the noncatalytic site) was compared to Zn(c)2Co(n)2 horse liver alcohol dehydrogenase with respect to its absorption, circular dichroism and magnetic circular dichroism spectra, as well as its magnetic moment. For Zn(c)2Co(n)2 horse liver alcohol dehydrogenase (prepared according to refs. 1 and 2) the extinction coefficients were redetermined in the UV, visible and near-infrared region and the molar ellipticities in the range 300-800 nm. The average magnetic moment was determined by the NMR method as 4.5-5.0 B.M. The results confirm a tetrahedral structure in the zinc-cobalt enzyme. In contrast, the spectroscopic data and the zero magnetic moment support a planar geometry for the nickel(Il) bound in the noncatalytic site. Zn(c)2Ni(n)2 horse liver alcohol dehydrogenase is very temperature-sensitive and precipitates after short exposure to room temperature. Stored in the cold it has the same activity as the native enzyme. The results indicate that the protein is flexible in the loop region binding the noncatalytic metal ion and that it may retain catalytic activity even in a partially distorted conformation.  相似文献   

18.
Structural comparisons of sorbitol dehydrogenase with zinc-containing 'long' alcohol dehydrogenases reveal distant but clear relationships. An alignment suggests 93 positional identities with horse liver alcohol dehydrogenase (25% of 374 positions) and 73 identities with yeast alcohol dehydrogenase (20%). Sorbitol dehydrogenase forms a link between these distantly related alcohol dehydrogenases and is in some regions more similar to one of them that they are to each other. 43 residues (11%) are common to all three enzymes and include a heavy over-representation of glycine (half of all glycine residues in sorbitol dehydrogenase), showing the importance of space restrictions in protein structures. Four regions are well conserved, two in each domain of horse liver alcohol dehydrogenase. They are two segments close to the active-site zinc atom of the catalytic domain, and two in the central beta-pleated sheet strands of the coenzyme-binding domain. These similarities demonstrate the general importance of internal and central building units in proteins. Large variations affect a region adjacent to the third protein ligand to the active-site zinc atom in horse liver alcohol dehydrogenase. Such changes at active sites of related enzymes are unusual. Other large differences concern the segment around the non-catalytic zinc atom of horse liver alcohol dehydrogenase; three of its four cysteine ligands are absent from sorbitol dehydrogenase. Three segments with several exchanges correspond to a continuous region with superficial areas, inter-domain contacts and inter-subunit interactions in the catalytic domain of alcohol dehydrogenase. They may correlate with the altered quaternary structure of sorbitol dehydrogenase. Regions corresponding to top and bottom beta-strands in the coenzyme-binding domain of the alcohol dehydrogenase are also little conserved. Within sorbitol dehydrogenase, a large segment shows an internal similarity. The two distantly related alcohol dehydrogenases and sorbitol dehydrogenase form a triplet of enzymes illustrating basic protein relationships. They are ancestrally close enough to establish similarities, yet sufficiently divergent to illustrate changes in all but fundamental properties.  相似文献   

19.
W P Fong  W M Keung 《Biochemistry》1987,26(18):5733-5738
The steady-state kinetics of isozymes of human liver alcohol dehydrogenase (ADH) containing the beta 2 (Oriental) subunit were investigated in order to confirm the supposition [Fong, W.P., & Keung, W. M. (1987) Biochemistry (preceding paper in this issue)] that the subunits of such heterodimeric ADHs act independently and noncooperatively. The ADH isozymes alpha beta 2, beta 2 beta 2, beta 2 gamma 1, and beta 2 gamma 2 as well as gamma 1 gamma 1 were purified by chromatography on DEAE-cellulose, 4-[3-[N-(6-aminocaproyl)amino]propyl]pyrazole--Sepharose, and CM-cellulose. Their kinetics were studied at pH 9.0 with cyclohexanol since this substrate permits maximal differentiation between activities of the heterodimeric subunits. Oxidation of cyclohexanol by the homodimers beta 2 beta 2 and gamma 1 gamma 1 follows conventional Michaelis-Menten kinetics. The values of Km and kcat determined for beta 2 beta 2 and gamma 1 gamma 1 are 0.11 M and 260 min-1 and 79 microM and 45 min-1, respectively, indicating that beta 2 beta 2, like the previously studied beta 1 beta 1, has an unusually low binding affinity for cyclohexanol compared to that of the ADH isozymes formed by the combination of alpha, gamma 1, and gamma 2 chains. Cyclohexanol oxidation by the heterodimers alpha beta 2, beta 2 gamma 1, and beta 2 gamma 2 follows biphasic kinetics which can be fully accounted for by the individual subunits, one exhibiting a high and the other a low substrate-binding affinity. Eadie-Hofstee plots resolve the biphasic kinetics into two linear components, each of which yields a set of kinetic parameters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Alcohol dehydrogenase isozymes from mouse liver (A2 and B2) and stomach (C2) tissues have been purified to homogeneity using triazine-dye affinity chromatography. The enzymes are dimers with similar but distinct subunit sizes, as determined by SDS/polyacrylamide gel electrophoresis: A, 43000; B, 39000, and C, 47000. Zinc analyses and 1,10-phenanthroline inhibition studies indicated that the A and C subunits each contained two atoms of zinc, with at least one being involved catalytically, whereas the B subunit probably contained a single non-catalytic zinc atom. The isozymes exhibited widely divergent kinetic characteristics. A2 exhibited a Km value for ethanol of 0.15 mM and a broad substrate specificity, with Km values decreasing dramatically with an increase in chain length; C2 also exhibited this broad specificity for alcohols but showed a Km value of 232 mM for ethanol. These isozymes also showed broad substrate specificities as aldehyde reductases. In contrast, B2 showed no detectable activity as an aldehyde reductase for the aldehydes examined, and used ethanol as substrate only at very high concentrations (greater than 0.5 M). The isozyme exhibited low Km and high Vmax values, however, with medium-chain alcohols. Immunological studies showed that A2 was immunologically distinct from the B2 and C2 isozymes. In vitro molecular hybridization studies gave no evidence for association between the alcohol dehydrogenase subunits. The results confirm genetic analyses [Holmes, Albanese, Whitehead and Duley (1981) J. Exp. Zool. 215, 151-157] which are consistent with at least three structural genes encoding alcohol dehydrogenase in the mouse and confirm the role of the major liver isozyme (A2) in ethanol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号