首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ephrins and Eph receptors have key roles in regulation of cell migration during development. We found that the RacGAP β2-chimaerin (chimerin) bound to EphA2 and EphA4 and inactivated Rac1 in response to ephrinA1 stimulation. EphA4 bound to β2-chimaerin through its kinase domain and promoted binding of Rac1 to β2-chimaerin. In addition, knockdown of endogenous β2-chimaerin blocked ephrinA1-induced suppression of cell migration. These results suggest that β2-chimaerin is activated by EphA receptors and mediates the EphA receptor-dependent regulation of cell migration.

Structured summary

MINT-7013428: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 2 (uniprotkb:Q80XD1-2) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013515: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with Rac1 (uniprotkb:P63001) by anti tag coimmunoprecipitation (MI:0007)MINT-7013410: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with Chimaerin beta 1 (uniprotkb:Q80XD1-1) and EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013503: Chimaerin beta 1 (uniprotkb:Q80XD1-1) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)MINT-7013472: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) by anti tag coimmunoprecipitation (MI:0007)MINT-7013450: EphA1 (uniprotkb:Q60750) physically interacts (MI:0218) with EphA2 (uniprotkb:O43921) and Chimaerin beta 2 (uniprotkb:P52757-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7013491: Chimaerin beta 2 (uniprotkb:Q80XD1-2) physically interacts (MI:0218) with EphA4 (uniprotkb:O08542) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

2.
Recent studies show LDL receptor-related protein 1B, LRP1B as a transducer of extracellular signals. Here, we identify six interacting partners of the LRP1B cytoplasmic region by yeast two-hybrid screen and confirmed their in vivo binding by immunoprecipitation. One of the partners, PICK1 recognizes the C-terminus of LRP1B and LRP1. The cytoplasmic domains of LRP1B are phosphorylated by PKCα about 100 times more efficiently than LRP1. Binding of PICK1 inhibits phosphorylation of LRP1B, but does not affect LRP1 phosphorylation.This study presents the possibility that LRP1B participates in signal transduction which PICK1 may regulate by inhibiting PKCα phosphorylation of LRP1B.

Structured summary

MINT-6801075: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with SNTG2 (uniprotkb:Q925E0) by two hybrid (MI:0018)MINT-6801030, MINT-6801468: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by two hybrid (MI:0018)MINT-6801284: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by anti tag coimmunoprecipitation (MI:0007)MINT-6801108: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Grb7 (uniprotkb:Q03160) by two hybrid (MI:0018)MINT-6801090: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with RanBPM (uniprotkb:P69566) by two hybrid (MI:0018)MINT-6801008: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by two hybrid (MI:0018)MINT-6801052: Lrp1b (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-2 (uniprotkb:Q9ERE9) by two hybrid (MI:0018)MINT-6801258, MINT-6801271: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Pick1 (uniprotkb:Q80VC8) by anti tag coimmunoprecipitation (MI:0007)MINT-6801244: RanBPM (uniprotkb:P69566) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801131, MINT-6801158: LRP1B4 (uniprotkb:Q9JI18) physically interacts (MI:0218) with Jip-1b (uniprotkb:Q9WVI9-1) by anti tag coimmunoprecipitation (MI:0007)MINT-6801231: PICK1 (uniprotkb:Q80VC8) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)MINT-6801173: Jip-1b (uniprotkb:Q9WVI9-1) physically interacts (MI:0218) with mLRP4 (uniprotkb:Q8VI56) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

3.
Chengchen Lufei 《FEBS letters》2009,583(2):271-159
Pin1 actively regulates diverse biological/pathological processes, but little is known about the regulatory mechanisms of its cellular localization. In this study, we report that the endogenous Pin1 is distributed in both nucleus and cytoplasm. We found that point mutations of several basic amino acids in the PPIase domain of Pin1 significantly compromise its nuclear localization. Such inhibition is independent of Pin1 enzymatic activity, and is mainly due to the defects in the nuclear import. A novel sequence harboring these residues was identified as a putative nuclear localization signal (NLS) of Pin1. Importin α5 of the nuclear import machinery was found to interact with Pin1.

Structured summary:

MINT-6803320: PIN1 (uniprotkb:Q13255) and importin alpha 5 (uniprotkb:P52294) physically interact (MI:0218) by anti tag coimmunoprecipitation (MI:0007)MINT-6803333: importin alpha 3 (uniprotkb:O00505) and PIN1 (uniprotkb:Q13255) physically interact (MI:0218) by anti tag coimmunoprecipitation (MI:0007)MINT-6803357: PIN1 (uniprotkb:Q13255) physically interacts (MI:0218) with importin alpha 5 (uniprotkb:P52294) by anti bait coimmunoprecipitation (MI:0006)MINT-6803345: St3 (uniprotkb:P40763) and importin alpha 5 (uniprotkb:P52294) physically interact (MI:0218) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

4.
Proteins imported into the endoplasmic reticulum (ER) are scanned for their folding status. Those that do not reach their native conformation are degraded via the ubiquitin‐proteasome system. This process is called ER‐associated degradation (ERAD). Der1 is known to be one of the components required for efficient degradation of soluble ERAD substrates like CPY* (mutated carboxypeptidase yscY). A homologue of Der1 exists, named Dfm1. No function of Dfm1 has been discovered, although a C‐terminally hemagglutinin (HA)3‐tagged Dfm1 protein has been shown to interact with the ERAD machinery. In our studies, we found Dfm1‐HA3 to be an ERAD substrate and therefore not suitable for functional studies of Dfm1 in ERAD. We found cellular, non‐tagged Dfm1 to be a stable protein. We identified Dfm1 to be part of complexes which contain the ERAD‐L ligase Hrd1/Der3 and Der1 as well as the ERAD‐C ligase Doa10. In addition, ERAD of Ste6*‐HA3 was strongly dependent on Dfm1. Interestingly, Dfm1 forms a complex with the AAA‐ATPase Cdc48 in a strain lacking the Cdc48 membrane‐recruiting component Ubx2. This complex does not contain the ubiquitin ligases Hrd1/Der3 and Doa10. The existence of such a complex might point to an additional function of Dfm1 independent from ERAD.  相似文献   

5.
Suppressor of cytokine signaling 1 (SOCS1) is a recently identified host factor that positively regulates the intracellular trafficking and stability of HIV-1 Gag. We here examine the molecular mechanism by which SOCS1 regulates intercellular Gag trafficking and virus particle production. We find that SOCS1 colocalizes with Gag along the microtubule network and promotes microtubule stability. SOCS1 also increases the amount of Gag associated with microtubules. Both nocodazole treatment and the expression of the microtubule-destabilizing protein, stathmin, inhibit the enhancement of HIV-1 particle production by SOCS1. SOCS1 facilitates Gag ubiquitination and the co-expression of a dominant-negative ubiquitin significantly inhibits the association of Gag with microtubules. We thus propose that the microtubule network plays a role in SOCS1-mediated HIV-1 Gag transport and virus particle formation.

Structured summary

MINT-7014185: Gag (uniprotkb:P05888) and SOCS1 (uniprotkb:O15524) colocalize (MI:0403) by cosedimentation (MI:0027)MINT-7014239: Cullin 2 (uniprotkb:Q13617) physically interacts (MI:0218) with RelA (uniprotkb:Q04206), RBX1 (uniprotkb:P62877), SOCS1 (uniprotkb:O15524), elongin B (uniprotkb:Q15369) and elongin C (uniprotkb:Q15370) by pull-down (MI:0096)MINT-7014046: gag (uniprotkb:P05888), SOCS1 (uniprotkb:O15524) and tubulin alpha (uniprotkb:Q13748) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7014269: tubulin alpha (uniprotkb:Q13748) physically interacts (MI:0218) with Gag (uniprotkb:P05888) by anti tag coimmunoprecipitation (MI:0007)MINT-7014036: tubulin alpha (uniprotkb:Q13748) and SOCS1 (uniprotkb:O15524) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7014201: Cullin 2 (uniprotkb:Q13617) physically interacts (MI:0218) with RBX1 (uniprotkb:P62877), SOCS1 (uniprotkb:O15524), elongin B (uniprotkb:Q15369) and elongin C (uniprotkb:Q15370) by pull-down (MI:0096)MINT-7014257: Gag (uniprotkb:P05888) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7014221: Cullin 2 (uniprotkb:Q13617) physically interacts (MI:0218) with Gag (uniprotkb:P05888), elongin C (uniprotkb:Q15370), elongin B (uniprotkb:Q15369), SOCS1 (uniprotkb:O15524) and RBX1 (uniprotkb:P62877) by pull-down (MI:0096)  相似文献   

6.
Mutations in parkin gene are responsible for autosomal recessive Parkinson’s disease (ARPD) and its loss-of-function is assumed to affect parkin ubiquitin ligase activity. Accumulation of its substrate may induce dopaminergic neurodegeneration in the substantia nigra (SN) of ARPD. Here, we show that parkin interacts with programmed cell death-2 isoform 1 (PDCD2-1) and promotes its ubiquitination. Furthermore, accumulation of PDCD2-1 was found in the SN of ARPD as well as in sporadic PD, suggesting that common failure of the ubiquitin-proteasome system is associated with neuronal death in both ARPD and sporadic PD.Structured summary:MINT-6805975, MINT-6806032, MINT-6806051, MINT-6806070:PDCD2 (uniprotkb:Q16342) physically interacts (MI:0218) with Parkin (uniprotkb:O60260) by anti tag coimmunoprecipitation (MI:0007)MINT-6805947:Parkin (uniprotkb:O60260) physically interacts (MI:0218) with PDCD2 (uniprotkb:Q16342) by two hybrid (MI:0018)MINT-6806000: PDCD2 (uniprotkb:Q16342) physically interacts (MI:0218) with ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007).  相似文献   

7.
8.
9.
The γ-secretase, composed of presenilin-1 (PS1) or presenilin-2 (PS2), nicastrin (NCT), anterior pharynx-defective phenotype 1 (APH-1), and PEN-2, is critical for the development of Alzheimer’s disease (AD). PSs are autoproteolytically cleaved, producing an N-terminal fragment (NTF) and a hydrophilic loop domain-containing C-terminal fragment. However, the role of the loop domain in the γ-secretase complex assembly remains unknown. Here, we report a novel PS2 isoform generated by alternative splicing, named PS2β, which is composed of an NTF with a hydrophilic loop domain. PS2β disturbed the interaction between NCT and APH-1, resulting in the inhibition of amyloid-β production. We concluded that PS2β may inhibit γ-secretase activity by affecting the γ-secretase complex assembly.

Structured summary

MINT-7025654: APH1 (uniprotkb:Q96BI3) physically interacts (MI:0218) with PEN2 (uniprotkb:Q9NZ42), PS2 beta (uniprotkb:Q61144-2) and PS1 (uniprotkb:P49769) by anti tag coimmunoprecipitation (MI:0007)MINT-7025631: APH1 (uniprotkb:Q96BI3) physically interacts (MI:0218) with NCT (uniprotkb:Q92542), PEN2 (uniprotkb:Q9NZ42) and PS1 (uniprotkb:P49769) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

10.
Nbr1, a ubiquitous kinase scaffold protein, contains a PB1, and a ubiquitin-associated (UBA) domain. We show here that the nbr1 UBA domain binds to lysine-48 and -63 linked polyubiquitin-B chains. Nbr1 also binds to the autophagic effector protein LC3-A via a novel binding site. Ubiquitin-binding, but not PB1-mediated p62/SQSTM1 interaction, is required to target nbr1 to LC3 and polyubiquitin-positive bodies. Nbr1 binds additionally to proteins implicated in ubiquitin-mediated protein turnover and vesicle trafficking: ubiquitin-specific peptidases USP8, and the endosomal transport regulator p14/Robld3. Nbr1 thus contributes to specific steps in protein turnover regulation disrupted in several hereditary human diseases.

Structured summary

MINT-7034452: USP8 (uniprotkb:P40818) physically interacts (MI:0218) with NBR1 (uniprotkb:Q14596) by pull down (MI:0096)MINT-7034438: SQSTM1 (uniprotkb:Q13501) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034309: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034323: NBR1 (uniprotkb:P97432) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034233: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with USP8 (uniprotkb:P40818) by two hybrid (MI:0018)MINT-7034207: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Robld3 (uniprotkb:Q9JHS3) by two hybrid (MI:0018)MINT-7034400, MINT-7034418: NBR1 (uniprotkb:Q14596) and LC3 (uniprotkb:Q9H492) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034167: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Ubiquitin B (uniprotkb:Q78XY9) by two hybrid (MI:0018)MINT-7034470: NBR1 (uniprotkb:Q14596) and USP8 (uniprotkb:P40818) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034194: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3-A (uniprotkb:Q91VR7) by two hybrid (MI:0018)MINT-7034336: SQSTM1 (uniprotkb:Q13501) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by pull down (MI:0096)MINT-7034375: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with LC3 (uniprotkb:Q9H492) by pull down (MI:0096)MINT-7034350: NBR1 (uniprotkb:Q14596) and Ubiquitin (uniprotkb:P62988) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7034181: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with Tmed10 (uniprotkb:Q9D1D4) by two hybrid (MI:0018)MINT-7034220: NBR1 (uniprotkb:Q14596) physically interacts (MI:0218) with ube2o (uniprotkb:Q6ZPJ3) by two hybrid (MI:0018)  相似文献   

11.
In naive T cells, Lck exerts a negative control on the ERK/MAPK pathway. We show that c-mip (c-maf inducing protein) interacts with the p85 subunit of PI3 kinase and inactivates Lck, which results in Erk1/2 and p38 MAPK activation. This effect is not enough to activate AP1 given the inability of ERK to migrate into the nucleus and to transactivate its target genes. We demonstrate that c-mip interacts with Dip1 and upregulates DAPK, which blocks the nuclear translocation of ERK1/2. This dual effect of c-mip is unique and might represent a potential mechanism to prevent the development of an immune response.

Structured summary

MINT-7383650: p85 (uniprotkb:P27986) physically interacts (MI:0915) with c-Mip (uniprotkb:Q8IY22) by anti bait coimmunoprecipitation (MI:0006)MINT-7383661: c-Mip (uniprotkb:Q8IY22) physically interacts (MI:0915) with p85 (uniprotkb:P27986) by anti tag coimmunoprecipitation (MI:0007)MINT-7383676: p85 (uniprotkb:P27986) physically interacts (MI:0915) with p110 (uniprotkb:P42336) by anti bait coimmunoprecipitation (MI:0006)MINT-7383689, MINT-7383711: Dip-1 (uniprotkb:Q80SY4) physically interacts (MI:0915) with c-Mip (uniprotkb:Q8IY22) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

12.
Hidekazu Iioka 《FEBS letters》2009,583(4):627-632
The Wnt family of secreted ligands plays critical roles during embryonic development and tumorigenesis. Here we show that Kaiso, a dual specific DNA-binding protein, functions as a bimodal regulator of canonical Wnt signaling. Loss-of-function analysis of Kaiso abrogated Wnt-mediated reporter activity and axis duplication, whereas gain-of-function analysis of Kaiso dose-dependently resulted in synergistic and suppressive effects. Our analyses further suggest Kaiso can regulate TCF/LEF1-activity for these effects via modulating HDAC1 and β-catenin-complex formation. Our studies together provide insights into why Kaiso null mice display resistance to intestinal tumors when crossed onto an ApcMin/+ background.

Stuctured summary

MINT-6823807: HDAC1 (uniprotkb:Q13547) physically interacts (MI:0218) with beta catenin (uniprotkb:P35222) by anti tag coimmunoprecipitation (MI:0007)MINT-6823820: axin (uniprotkb:O15169) physically interacts (MI:0218) with beta catenin (uniprotkb:P35222) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

13.
Daniela Tosoni 《FEBS letters》2009,583(2):293-300
CAP (c-Cbl associated protein)/ponsin belongs to a family of adaptor proteins implicated in cell adhesion and signaling. Here we show that CAP binds to and co-localizes with the essential endocytic factor dynamin. We demonstrate that CAP promotes the formation of dynamin-decorated tubule like structures, which are also coated with actin filaments. Accordingly, we found that the expression of CAP leads to the inhibition of dynamin-mediated endocytosis and increases EGFR stability. Thus, we suggest that CAP may coordinate the function of dynamin with the regulation of the actin cytoskeleton during endocytosis.

Structured summary:

MINT-6804322: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with Cbl (uniprotkb:Q8K4S7) and dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804285: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with FAK (uniprotkb:O35346), vinculin (uniprotkb:P85972) and dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804245, MINT-6804259, MINT-6804272: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with dynamin 2 (uniprotkb:P39052) by pull down (MI:0096)MINT-6804344: CAP (uniprotkb:Q9BX66) physically interacts (MI:0218) with dynamin 2 (uniprotkb:P50570) by anti tag coimmunoprecipitation (MI:0007)MINT-6804371: dynamin 1 (uniprotkb:P21575) physically interacts (MI:0218) with CAP (uniprotkb:O35413) by anti bait coimmunoprecipitation (MI:0006)MINT-6804446, MINT-6804464: F-actin (uniprotkb:P60709), CAP (uniprotkb:Q9BX66) and dynamin 2 (uniprotkb:P50570) colocalize (MI:0403) by fluorescence microscopy (MI:0416)  相似文献   

14.
The Plenty of SH3 domains protein (POSH) is an E3 ligase and a scaffold in the JNK mediated apoptosis, linking Rac1 to downstream components.We here describe POSH2 which was identified from a p21-activated kinase 2 (PAK2) interactor screen. POSH2 is highly homologous with other members of the POSH family; it contains four Src homology 3 (SH3) domains and a RING finger domain which confers E3 ligase activity to the protein. In addition POSH2 contains an N-terminal extension which is conserved among its mammalian counterparts. POSH2 interacts with GTP-loaded Rac1. We have mapped this interaction to a previously unrecognized partial Cdc42/Rac1-interactive binding domain.

Structured summary

MINT-7987761: POSH1 (uniprotkb:Q9HAM2) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987932: PAK2 (uniprotkb:Q13177) binds (MI:0407) to CDC42 (uniprotkb:Q07912) by solid phase assay (MI:0892)MINT-7987908: POSH1 (uniprotkb:Q9HAM2) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987880: POSH2 (uniprotkb:Q8TEJ3) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)MINT-7987734: POSH2 (uniprotkb:Q8TEJ3) physically interacts (MI:0915) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)MINT-7987779, MINT-7987804, MINT-7987824, MINT-7987838, MINT-7987853: Rac1 (uniprotkb:P63000) physically interacts (MI:0915) with POSH2 (uniprotkb:Q8TEJ3) by anti tag coimmunoprecipitation (MI:0007)MINT-7987920: PAK2 (uniprotkb:Q13177) binds (MI:0407) to Rac1 (uniprotkb:P63000) by solid phase assay (MI:0892)  相似文献   

15.
The KRAB-type zinc-finger protein Apak (ATM and p53 associated KZNF protein) specifically suppresses p53-mediated apoptosis. Upon DNA damage, Apak is phosphorylated and inhibited by ATM kinase, resulting in p53 activation. However, how Apak is regulated in response to oncogenic stress remains unknown. Here we show that upon oncogene activation, Apak is inhibited in the tumor suppressor ARF-dependent but ATM-independent manner. Oncogene-induced ARF protein directly interacts with Apak and competes with p53 to bind to Apak, resulting in Apak dissociation from p53. Thus, Apak is differentially regulated in the ARF and ATM-dependent manner in response to oncogenic stress and DNA damage, respectively.

Structured summary

MINT-7989670: p53 (uniprotkb:P04637) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989812: HDM2 (uniprotkb:Q00987) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989603, MINT-7989626: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti bait coimmunoprecipitation (MI:0006)MINT-7989653: ARF (uniprotkb:Q8N726-1) binds (MI:0407) to APAK (uniprotkb:Q8TAQ5) by pull down (MI:0096)MINT-7989686, MINT-7989705, MINT-7989747:APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with ARF (uniprotkb:Q8N726-1) by anti tag coimmunoprecipitation (MI:0007)MINT-7989724: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0914) with ARF (uniprotkb:Q8N726-1) and p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)MINT-7989635: ARF (uniprotkb:Q8N726-1) and APAK (uniprotkb:Q8TAQ5) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7989584, MINT-7989773: APAK (uniprotkb:Q8TAQ5) physically interacts (MI:0915) with p53 (uniprotkb:P04637) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

16.
THOC7 and Fms-interacting protein (FMIP) are members of the THO complex that associate with the mRNA export apparatus. FMIP is a nucleocytoplasmic shuttling protein with a nuclear localization signal (NLS), whereas THOC7 does not contain a typical NLS motif. We show here that THOC7 (50-137, amino acid numbers) binds to the N-terminal portion (1-199) of FMIP directly. FMIP is detected mainly in the nucleus. In the absence of exogenous FMIP, THOC7 resides mainly in the cytoplasm, while in the presence of FMIP, THOC7 is transported into the nucleus with FMIP. Furthermore, THOC7 lacking the FMIP binding site does not co-localize with FMIP, indicating that THOC7/FMIP interaction is required for nuclear localization of THOC7.

Structured summary

MINT-6799962, MINT-6799973, MINT-6800005: THOC7 (uniprotkb:Q6I9Y2) physically interacts (MI:0218) with THOC5 (uniprotkb:Q13769) by pull down (MI:0096)MINT-6800108: FMIP (uniprotkb:Q13769) and THOC7 (uniprotkb: Q6I9Y2) co-localize (MI:0403) by fluorescence microscopy (MI:0416)MINT-6800052: FMIP (uniprotkb:Q13769) physically interacts (MI:0218) with THOC1 (uniprotkb: Q96FV9) by anti tag coimmunoprecipitation (MI:0007)MINT-6800022: THOC7 (uniprotkb:Q6I9Y2) physically interacts (MI:0218) with FMIP (uniprotkb:Q6DFL5) by pull down (MI:0096)MINT-6799989: THOC7 (uniprotkb:Q6I9Y2) binds (MI:0407) to FMIP (uniprotkb:Q13769) by pull down (MI:0096)MINT-6800071, MINT-6800089: FMIP (uniprotkb:Q13769) physically interacts (MI:0218) with THOC7 (uniprotkb:Q6I9Y2) and THOC1 (uniprotkb:Q96FV9) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

17.
N-methyl-d-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the brain. Here we demonstrate interactions between the NR2A and NR2B subunits of NMDARs with flotillin-1 (flot-1), a lipid raft-associated protein. When mapped, analogous regions in the far distal C-termini of NR2A and NR2B mediate binding to flot-1, and the prohibitin homology domain of flot-1 contains binding sites for NR2A and NR2B. Although NR2B can also directly bind to flot-2 via a separate region of its distal C-terminus, NMDARs were significantly more colocalized with flot-1 than flot-2 in cultured hippocampal neurons. Overall, this study defines a novel interaction between NMDARs and flotillins.

Structured summary

MINT-7013094: NR2A (uniprotkb:Q00959), NR2B (uniprotkb:Q00960) and Flot2 (uniprotkb:Q9Z2S9) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013147: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)MINT-7013189: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013033: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013178: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013197, MINT-7013210: NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) physically interact (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013002: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013117: Flot1 (uniprotkb:Q9Z1E1), NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013171: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by anti bait coimmunoprecipitation (MI:0006)MINT-7013017: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013054: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013129: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013155: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013074: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by two hybrid (MI:0018)MINT-7013162: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

18.
The p53 tumour suppressor protein is tightly controlled by the E3 ubiquitin ligase, mouse double minute 2 (MDM2), but maintains MDM2 expression as part of a negative feedback loop. We have identified the immunophilin, 25 kDa FK506-binding protein (FKBP25), previously shown to be regulated by p53-mediated repression, as an MDM2-interacting partner. We show that FKBP25 stimulates auto-ubiquitylation and proteasomal degradation of MDM2, leading to the induction of p53. Depletion of FKBP25 by siRNA leads to increased levels of MDM2 and a corresponding reduction in p53 and p21 levels. These data are consistent with the idea that FKBP25 contributes to regulation of the p53-MDM2 negative feedback loop.

Structured summary

MINT-6823686:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by anti bait coimmunoprecipitation (MI:0006)MINT-6823707, MINT-6823722:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q62446) by pull down (MI:0096)MINT-6823775:P53 (uniprotkb:Q04637) physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by anti bait coimmunoprecipitation (MI:0006)MINT-6823735, MINT-6823749:FKBP25 (uniprotkb:Q62446) binds (MI:0407) to MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823761:Ubiquitin (UNIPROTKB:62988)P physically interacts (MI:0218) with MDM2 (uniprotkb:Q00987) by pull down (MI:0096)MINT-6823669:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with FKBP25 (uniprotkb:Q00688) by two hybrid (MI:0018)  相似文献   

19.
Shan SF  Wang LF  Zhai JW  Qin Y  Ouyang HF  Kong YY  Liu J  Wang Y  Xie YH 《FEBS letters》2008,582(27):3723-3728
Prospero-related homeobox protein (Prox1) plays essential roles in the development of many tissues and organs. In the present study, we show that Prox1 is modified by the small ubiquitin-like protein SUMO-1 in cultured cells. Mutation analysis identified at least four potential sumoylation sites within the repression domain of Prox1. Our data indicate that sumoylation of Prox1 reduces its interaction with HDAC3 and as a result downregulates its corepressor activity. These findings suggest that sumoylation may serve as a novel mechanism for the regulation of Prox1’s corepressor activity.

Structured summary

MINT-6787569:
PROX1 (uniprotkb:Q92786) physically interacts (MI:0218) with HDAC3 (uniprotkb:O15379) by anti tag coimmunoprecipitation (MI:0007)
MINT-6787767:
PROX1 (uniprotkb:Q92786) physically interacts (MI:0218) with SUMO-1 (uniprotkb:P63165) by anti tag coimmunoprecipitation (MI:0007)
  相似文献   

20.
Jian D  Aili Z  Xiaojia B  Huansheng Z  Yun H 《FEBS letters》2010,584(23):4745-3920
Ras-GEF Cdc25p has been found to be hyperphosphorylated upon glucose addition. This work provides evidence indicating that PKA activity positively regulates the degree of Cdc25p phosphorylation, and that the intracellular association of Cdc25p and Ras2p is independent of PKA activity. In vitro experiments revealed that the Ras2-GEF activity of Cdc25p is inhibited by Cdc25p phosphorylation. These data suggest a negative feedback mechanism by which intracellular cAMP synthesis is inhibited by PKA through Cdc25p phosphorylation.

Structured summary

MINT-8053016: CDC25p (uniprotkb:P04821) physically interacts (MI:0915) with ras2p (uniprotkb:P01120) by anti tag co-immunoprecipitation (MI:0007)MINT-8053030: ras2p (uniprotkb:P01120) physically interacts (MI:0915) with CDC25p (uniprotkb:P04821) by anti bait co-immunoprecipitation (MI:0006)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号