首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The human type II hair keratin subfamily consists of six individual members and can be divided into two groups. The group A members hHb1, hHb3, and hHb6 are structurally related, whereas group C members hHb2, hHb4, and hHb5 are rather distinct. Specific antisera against the individual hair keratins were used to establish the two-dimensional catalog of human type II hair keratins. In this catalog, hHb5 showed up as a series of isoelectric variants, well separated from a lower, more acidic, and complex protein streak containing isoelectric variants of hair keratins hHb1, hHb2, hHb3, and hHb6. Both in situ hybridization and immunohistochemistry on anagen hair follicles showed that hHb5 and hHb2 defined early stages of hair differentiation in the matrix (hHb5) and cuticle (hHb5 and hHb2), respectively. Although cuticular differentiation proceeded without the expression of further type II hair keratins, cortex cells simultaneously expressed hHb1, hHb3, and hHb6 at an advanced stage of differentiation. In contrast, hHb4, which is undetectable in hair follicle extracts and sections, could be identified as the largest and most alkaline member of this subfamily in cytoskeletal extracts of dorsal tongue. This hair keratin was localized in the posterior compartment of the tongue filiform papillae. Comparative analysis of type II with the previously published type I hair keratin expression profiles suggested specific, but more likely, random keratin-pairing principles during trichocyte differentiation. Finally, by combining the previously published type I hair keratin catalog with the type II hair keratin catalog and integrating both into the existing catalog of human epithelial keratins, we present a two-dimensional compilation of the presently known human keratins.  相似文献   

3.
The claw of lizards is largely composed of beta‐keratins, also referred to as keratin‐associated beta‐proteins. Recently, we have reported that the genome of the lizard Anolis carolinensis contains alpha keratin genes homologous to hair keratins typical of hairs and claws of mammals. Molecular and immunohistochemical studies demonstrated that two hair keratin homologs named hard acid keratin 1 (HA1) and hard basic keratin 1 (HB1) are expressed in keratinocytes forming the claws of A. carolinensis. Here, we extended the immunocytochemical localization of the novel reptilian keratins to the ultrastructural level. After sectioning, claws were subjected to immunogold labeling using antibodies against HA1, HB1, and, for comparison, beta‐keratins. Electron microscopy showed that the randomly organized network of tonofilaments in basal and suprabasal keratinocytes becomes organized in long and parallel bundles of keratin in precorneous layers, resembling cortical cells of hairs. Entering the cornified part of the claw, the elongated corneous cells fuse and accumulate corneous material. HA1 and HB1 are absent in the basal layer and lower spinosus layers of the claw and are expressed in the upper and precorneous layers, including the elongating corneocytes. The labeling for alpha‐keratin was loosely associated with filament structures forming the fibrous framework of the claws. The ultrastructural distribution pattern of hard alpha‐keratins resembled that of beta‐keratins, which is compatible with the hypothesis of an interaction during claw morphogenesis. The data on the ultrastructural localization of hair keratin homologs facilitate a comparison of lizard claws and mammalian hard epidermal appendages containing hair keratins. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
The human type I hair keratin subfamily comprises nine individual members, which can be subdivided into three groups. Group A (hHa1, hHa3-I, hHa3-II, hHa4) and B (hHa7, hHa8) each contains structurally related hair keratins, whereas group C members hHa2, hHa5, and hHa6 represent structurally rather unrelated hair keratins. Antibodies produced against these individual hair keratins, first analyzed for specificity by one- dimensional Western blots of total hair keratins, were used to establish the two-dimensional catalog of the human type I hair keratin subfamily. The catalog comprises two different series of type I hair keratins: a strongly expressed, Coomassie-stainable series containing hair keratins hHa1, hHa3-I/II, hHa4, and hHa5, and a weakly expressed, immunodetectable series harboring hHa2, hHa6 hHa7, and hHa8. In situ hybridization and immunohistochemical expression studies on scalp follicles show that two hair keratins, hHa2 and hHa5, define the early stage of hair differentiation, i.e. hHa5 expression in hair matrix and hHa5/hHa2 coexpression in the early hair cuticle cells. Whereas cuticular differentiation proceeds without the expression of further type I hair keratins, matrix cells embark on the cortical pathway by sequentially expressing hHa1, hHa3-I/II, and hHa4, which are supplemented by hHa6 at an advanced stage of cortical differentiation, and hHa8, which is expressed heterogeneously in cortex cells. Thus, six type I hair keratins are involved in the terminal differentiation of anagen hairs. The expression of hHa7 is conspicuously different from that of the other hair keratins in that it does not occur in the large anagen follicles of terminal scalp hairs but only in central cortex cells of the rare and small follicle type that gives rise to vellus hairs.  相似文献   

6.
7.
We purified both the type I subunit and type II subunit of porcine hair keratin and compared their ability to form a uniform film of reconstituted keratin on a culture plate, and their effect on a model of neural cells. We observed the surface of the keratin-immobilized plate using a scanning electron microscope (SEM) and measured water contact angles to characterize the surface. We cultured PC12 cells on plates on which crude keratin, the type I subunit, or the type II subunit were immobilized. The water contact angles were slightly different from each other. The cells proliferated well on all three keratin-immobilized plates. The type II subunit showed a tendency to inhibit the differentiation of PC12 cells significantly as an extension of the cell shapes and neurite outgrowth in comparison with the crude extract and the type I subunit. The type I subunit and the type II subunit showed slight differences in cell differentiation, but not in cell proliferation.  相似文献   

8.
角蛋白属于I型和II型中间纤维,是上皮细胞中间纤维的主要组成蛋白。角蛋白对上皮细胞及组织的稳定性和完整性具有重要的功能,此外,许多角蛋白还参与细胞内的信号转导通路。角蛋白的基因突变会导致一系列的遗传性皮肤病,还能引起肝脏、口腔粘膜、食管、外阴、直肠粘膜的白海绵痣等疾病。最近大量研究发现,角蛋白在人类多种类型肿瘤中也存在特异性表达,角蛋白及其抗体在肿瘤的免疫化学诊断、核转移、精确的分型或分类等方面具有重要的作用,并且还有助于预测肿瘤治疗反应和预后情况。因此,研究角蛋白与肿瘤之间的相互联系,揭示它们的作用机制对肿瘤的诊断和治疗有着重要意义。该文回顾了近年来角蛋白的分子生物学研究概况及临床应用,对各种角蛋白与肿瘤发生、进展、诊断以及预后的关系进行综述,同时对存在的问题及困难作了探讨并对未来的研究进行了展望。  相似文献   

9.
We present the nucleotide and amino acid sequence for a novel human type I hair keratin, which could be identified through its high sequence homology and strict carboxyterminal length identity as a human ortholog of the murine hair keratin mHa3. Our hHa3 sequence differs, however, from that of a previously described hHa3 hair keratin (published only as an amino acid sequence; [13]) in 24 amino acid positions, 8 of which occur in the middle of the carboxyterminal domain. PCR of genomic DNA from 25 normal human subjects using a primer pair derived from sequence segments located in the 3-region of our hHa3 clone that encode conserved amino acid sequences in both keratins, resulted in the amplification of two distinct products of 0.38 kbp and 1.0 kbp. DNA sequence analysis of the cloned PCR products allowed identification of the 0.38 kb sequence as that originating from Yuet al. [13] and the 1.0 kb sequence as that being derived from our data. The difference in fragment length was due to unique intron 6 sequences, indicating that these two keratin species are encoded by genes of their own. Moreover, extensive Southern blot analyses with DNA from 25 unrelated individuals of different races using a 3-noncoding sequence from our keratin and the intron 6 sequence of the keratin of Yuet al. [13], as hybridization probes showed that both keratin genes are present as single copy sequences occurring ubiquitously and without gross alterations in the human genome. Collectively, these data demonstrate that the human type I hair keratin described in this paper represents an isoform of the previously described hHa3 keratin. We propose that these hHa3 isoforms be named in chronological order of discovery hHa3-I and hHa3-II.  相似文献   

10.
角蛋白属于I型和II型中间纤维,是上皮细胞中间纤维的主要组成蛋白。角蛋白对上皮细胞及组织的稳定性和完整性具有重要的功能,此外,许多角蛋白还参与细胞内的信号转导通路。角蛋白的基因突变会导致一系列的遗传性皮肤病,还能引起肝脏、口腔粘膜、食管、外阴、直肠粘膜的白海绵痣等疾病。最近大量研究发现,角蛋白在人类多种类型肿瘤中也存在特异性表达,角蛋白及其抗体在肿瘤的免疫化学诊断、核转移、精确的分型或分类等方面具有重要的作用,并且还有助于预测肿瘤治疗反应和预后情况。因此,研究角蛋白与肿瘤之间的相互联系,揭示它们的作用机制对肿瘤的诊断和治疗有着重要意义。该文回顾了近年来角蛋白的分子生物学研究概况及临床应用,对各种角蛋白与肿瘤发生、进展、诊断以及预后的关系进行综述,同时对存在的问题及困难作了探讨并对未来的研究进行了展望。  相似文献   

11.
Human hair keratins have a strong potential for development as clinically relevant biomaterials because they are abundant and bioactive and are a realistic source of autologous proteins. Specifically, keratins have the propensity to polymerize in an aqueous environment to form hydrogels. In order to evaluate the suitability of keratin hydrogels as substrates for cell culture, we have fabricated hydrogels using keratins extracted from human hair by inducing polymerization with Ca2+; these hydrogels exhibit highly branched and porous micro-architectures. L929 murine fibroblasts have been used in a preliminary cell culture study to compare the in vitro biocompatibility of the keratin hydrogels with collagen type 1 hydrogels of similar viscoelastic properties. Our results reveal that keratin hydrogels are comparable with collagen hydrogels in terms of the promotion of cell adhesion, proliferation and the preservation of cell viability. Interestingly, cells remain clustered in proliferative colonies within the keratin hydrogels but are homogeneously distributed as single cells in collagen hydrogels. Collectively, our results demonstrate that keratin hydrogels can be used as substrates for cell culture. Such gels might find applications as templates for soft tissue regeneration.  相似文献   

12.
《The Journal of cell biology》1986,103(6):2593-2606
Although numerous hair proteins have been studied biochemically and many have been sequenced, relatively little is known about their in situ distribution and differential expression in the hair follicle. To study this problem, we have prepared several mouse monoclonal antibodies that recognize different classes of human hair proteins. Our AE14 antibody recognizes a group of 10-25K hair proteins which most likely corresponds to the high sulfur proteins, our AE12 and AE13 antibodies define a doublet of 44K/46K proteins which are relatively acidic and correspond to the type I low sulfur keratins, and our previously described AE3 antibody recognizes a triplet of 56K/59K/60K proteins which are relatively basic and correspond to the type II low sulfur keratins. Using these and other immunological probes, we demonstrate the following. The acidic 44K/46K and basic 56-60K hair keratins appear coordinately in upper corticle and cuticle cells. The 10-25K, AE14-reactive antigens are expressed only later in more matured corticle cells that are in the upper elongation zone, but these antigens are absent from cuticle cells. The 10-nm filaments of the inner root sheath cells fail to react with any of our monoclonal antibodies and are therefore immunologically distinguishable from the cortex and cuticle filaments. Nail plate contains 10-20% soft keratins in addition to large amounts of hair keratins; these soft keratins have been identified as the 50K/58K and 48K/56K keratin pairs. Taken together, these results suggest that the precursor cells of hair cortex and nail plate share a major pathway of epithelial differentiation, and that the acidic 44K/46K and basic 56-60K hard keratins represent a co- expressed keratin pair which can serve as a marker for hair/nail-type epithelial differentiation.  相似文献   

13.
Type I and type II keratins are major constituents of intermediate filaments that play a fundamental role in the cytoskeletal network. By using both somatic cell hybrids and conventional and interspecific linkage crosses, several genes encoding type I keratins, including the epidermal keratin K10, were shown to be closely linked to the homeobox-2 complex and the rex locus on mouse chromosome 11. The absence of crossovers between type I keratin-encoding genes and rex (N = 239), a locus affecting hair development, raises the possibility that mutations at rex and neighboring loci affecting skin and hair development involve type I keratin genes.  相似文献   

14.
In the past two decades, keratin biomaterials have shown impressive results as scaffolds for tissue engineering, wound healing, and nerve regeneration. In addition to its intrinsic biocompatibility, keratin interacts with specific cell receptors eliciting beneficial biochemical cues. However, during extraction from natural sources, such as hair and wool fibers, natural keratins are subject to extensive processing conditions that lead to formation of unwanted by‐products. Additionally, natural keratins suffer from limited sequence tunability. Recombinant keratin proteins can overcome these drawbacks while maintaining the desired chemical and physical characteristics of natural keratins. Herein, we present the bacterial expression, purification, and solution characterization of human hair keratins K31 and K81. The obligate heterodimerization of the K31/K81 pair that results in formation of intermediate filaments is maintained in the recombinant proteins. Surprisingly, we have for the first time observed new zero‐ and one‐dimensional nanostructures from homooligomerization of K81 and K31, respectively. Further analysis of the self‐assembly mechanism highlights the importance of disulfide crosslinking in keratin self‐assembly.  相似文献   

15.
In the course of studies on local keratin phenotypes in the epidermis of the adult mouse, we have identified a new 65 kD and 48 kD keratin pair. In mouse skin, this keratin pair is only expressed in suprabasal cells of adult mouse tail scale epidermis which is characterized by the complete absence of a granular layer and the formation of a remarkably compact stratum corneum. A second site in which the 65 kD and 48 kD keratin pair is suprabasally expressed and whose morphology corresponds to that of tail scale epidermis is found in the posterior unit of the complex filiform papillae of mouse tongue. The causal relationship of the expression of the 65 kD and 48 kD keratins with this particular type of a non-pathological epithelial parakeratosis is emphasized by the suppression of the mRNA synthesis of the two keratins during retinoic acid mediated orthokeratotic conversion of tail scale epidermis. Apart from tail scale epidermis and the posterior unit of the filiform papillae, the 65 kD and 48 kD keratin pair is, however, also coexpressed with "hard" alpha keratins in suprabulbar cells of hair follicles and in suprabasal cells of the central core unit of the lingual filiform papillae. The non alpha-helical domains of the two new keratins are rich in cysteine and proline residues and lack the typical subdomains into which epithelial keratins of both types can be divided. This structural resemblance of the 65 kD and 48 kD keratins to "hard" alpha keratins is supported by comparative flexibility predictions for their non alpha-helical domains. Phylogenetic investigations then show that the 65 kD and 48 kD keratin pair has evolved together with hair keratins, but has diverged from these during evolution to constitute an independent branch of a pair of hair-related keratins. In view of this exceptional position of the 65 kD and 48 kD keratins within the keratin multigene family, their expression has apparently been adopted by rare anatomical sites in which an orthokeratinized stratum corneum would be too soft and a hard keratinized structure would be too rigid to meet the functional requirement of the respective epithelia.  相似文献   

16.
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.  相似文献   

17.
Monilethrix is a rare dominant hair disease characterized by beaded or moniliform hair which results from the periodic thinning of the hair shaft and shows a high propensity to excess weathering and fracturing. Several cases of monilethrix have been linked to the type II keratin gene cluster on chromosome 12q13 and causative heterozygous mutations of a highly conserved glutamic acid residue (Glu 410 Lys and Glu 410 Asp) in the helix termination motif of the type II hair keratin hHb6 have recently been identified in monilethrix patients of two unrelated families. In the present study, we have investigated two further unrelated monilethrix families as well as a single case. Affected members of one family and the single patient exhibited the prevalent hHb6 Glu 410 Lys mutation. In the second family, we identified in affected individuals a lysine substitution of the corresponding glutamic acid residue, Glu 403, in the type II hair keratin hHb1, suggesting that this site represents a mutational hotspot in these highly related type II hair keratins. Both hHb1 and hHb6 are largely coexpressed in cortical trichocytes of the hair shaft. This indicates that monilethrix is a disease of the hair cortex. Received: 24 June 1997 / Accepted: 30 July 1997  相似文献   

18.
Keratins make up the largest subgroup of intermediate filament proteins and represent the most abundant proteins in epithelial cells. They exist as highly dynamic networks of cytoplasmic 10-12 nm filaments that are obligate heteropolymers involving type I and type II keratins. The primary function of keratins is to protect epithelial cells from mechanical and nonmechanical stresses that result in cell death. Other emerging functions include roles in cell signaling, the stress response and apoptosis, as well as unique roles that are keratin specific and tissue specific. The role of keratins in a number of human skin, hair, ocular, oral and liver diseases is now established and meshes well with the evidence gathered from transgenic mouse models. The phenotypes associated with defects in keratin proteins are subject to significant modulation by functional redundancy within the family and modifier genes as well. Keratin filaments undergo complex regulation involving post-translational modifications and interactions with self and with various classes of associated proteins.  相似文献   

19.
The genomic database for a marsupial, the opossum Monodelphis domestica, is highly advanced. This allowed a complete analysis of the keratin I and keratin II gene cluster with some 30 genes in each cluster as well as a comparison with the human keratin clusters. Human and marsupial keratin gene clusters have an astonishingly similar organization. As placental mammals and marsupials are sister groups a corresponding organization is also expected for the archetype mammal. Since hair is a mammalian acquisition the following features of the cluster refer to its origin. In both clusters hair keratin genes arose at an interior position. While we do not know from which epithelial keratin genes the first hair keratins type-I and -II genes evolved, subsequent gene duplications gave rise to a subdomain of the clusters with many neighboring hair keratin genes. A second subdomain accounts in both clusters for 4 neighboring genes encoding the keratins of the inner root sheath (irs) keratins. Finally the hair keratin gene subdomain in the type-I gene cluster is interrupted after the second gene by a region encoding numerous genes for the high/ultrahigh sulfur hair keratin-associated proteins (KAPs). We also propose a tentative synteny relation of opossum and human genes based on maximal sequence conservation of the encoded keratins. The keratin gene clusters of the opossum seem to lack pseudogenes and display a slightly increased number of genes. Opossum keratin genes are usually longer than their human counterparts and also show longer intergenic distances.  相似文献   

20.

Background

Hair represents an evolutionary innovation that appeared early on mammalian evolutionary history, and presumably contributed significantly to the rapid radiation of the group. An interesting event in hair evolution has been its secondary loss in some mammalian groups, such as cetaceans, whose hairless phenotype appears to be an adaptive response to better meet the environmental conditions. To determine whether different repertoire of keratin genes among mammals can potentially explain the phenotypic hair features of different lineages, we characterized the type I and II clusters of alpha keratins from eight mammalian species, including the hairless dolphin and minke whale representing the order Cetacea.

Results

We combined the available genomic information with phylogenetic analysis to conduct a comprehensive analysis of the evolutionary patterns of keratin gene clusters. We found that both type I and II gene clusters are fairly conserved among the terrestrial mammals included in this study, with lineage specific gene duplication and gene loss. Nevertheless, there is also evidence for an increased rate of pseudogenization in the cetacean lineage when compared to their terrestrial relatives, especially among the hair type keratins.

Conclusions

Here we present a comprehensive characterization of alpha-keratin genes among mammals and elucidate the mechanisms involved in the evolution of this gene family. We identified lineage-specific gene duplications and gene loss among the Laurasiatherian and Euarchontoglires species included in the study. Interestingly, cetaceans present an increased loss of hair-type keratin genes when compared to other terrestrial mammals. As suggested by the ‘less-is-more’ hypothesis, we do not rule out the possibility that the gene loss of hair-type keratin genes in these species might be associated to the hairless phenotype and could have been adaptive in response to new selective pressures imposed by the colonization of a new habitat. Our study provides support for the idea that pseudogenes are not simply ‘genomic fossils’ but instead have adaptive roles during the evolutionary process.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-869) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号