首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optimal sequence alignment using affine gap costs   总被引:27,自引:0,他引:27  
When comparing two biological sequences, it is often desirable for a gap to be assigned a cost not directly proportional to its length. If affine gap costs are employed, in other words if opening a gap costsv and each null in the gap costsu, the algorithm of Gotoh (1982,J. molec. Biol. 162, 705) finds the minimum cost of aligning two sequences in orderMN steps. Gotoh's algorithm attempts to find only one from among possibly many optimal (minimum-cost) alignments, but does not always succeed. This paper provides an example for which this part of Gotoh's algorithm fails and describes an algorithm that finds all and only the optimal alignments. This modification of Gotoh's algorithm still requires orderMN steps. A more precise form of path graph than previously used is needed to represent accurately all optimal alignments for affine gap costs.  相似文献   

2.
Based on the observation that a single mutational event can delete or insert multiple residues, affine gap costs for sequence alignment charge a penalty for the existence of a gap, and a further length-dependent penalty. From structural or multiple alignments of distantly related proteins, it has been observed that conserved residues frequently fall into ungapped blocks separated by relatively nonconserved regions. To take advantage of this structure, a simple generalization of affine gap costs is proposed that allows nonconserved regions to be effectively ignored. The distribution of scores from local alignments using these generalized gap costs is shown empirically to follow an extreme value distribution. Examples are presented for which generalized affine gap costs yield superior alignments from the standpoints both of statistical significance and of alignment accuracy. Guidelines for selecting generalized affine gap costs are discussed, as is their possible application to multiple alignment. Proteins 32:88–96, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    3.
    Fast, optimal alignment of three sequences using linear gap costs   总被引:2,自引:0,他引:2  
    Alignment algorithms can be used to infer a relationship between sequences when the true relationship is unknown. Simple alignment algorithms use a cost function that gives a fixed cost to each possible point mutation-mismatch, deletion, insertion. These algorithms tend to find optimal alignments that have many small gaps. It is more biologically plausible to have fewer longer gaps rather than many small gaps in an alignment. To address this issue, linear gap cost algorithms are in common use for aligning biological sequence data. More reliable inferences are obtained by aligning more than two sequences at a time. The obvious dynamic programming algorithm for optimally aligning k sequences of length n runs in O(n(k)) time. This is impractical if k>/=3 and n is of any reasonable length. Thus, for this problem there are many heuristics for aligning k sequences, however, they are not guaranteed to find an optimal alignment. In this paper, we present a new algorithm guaranteed to find the optimal alignment for three sequences using linear gap costs. This gives the same results as the dynamic programming algorithm for three sequences, but typically does so much more quickly. It is particularly fast when the (three-way) edit distance is small. Our algorithm uses a speed-up technique based on Ukkonen's greedy algorithm (Ukkonen, 1983) which he presented for two sequences and simple costs.  相似文献   

    4.
    Sequence alignment underpins common tasks in molecular biology, including genome annotation, molecular phylogenetics, and homology modeling. Fundamental to sequence alignment is the placement of gaps, which represent character insertions or deletions. We assessed the ability of a generalized affine gap cost model to reliably detect remote protein homology and to produce high-quality alignments. Generalized affine gap alignment with optimal gap parameters performed as well as the traditional affine gap model in remote homology detection. Evaluation of alignment quality showed that the generalized affine model aligns fewer residue pairs than the traditional affine model but achieves significantly higher per-residue accuracy. We conclude that generalized affine gap costs should be used when alignment accuracy carries more importance than aligned sequence length.  相似文献   

    5.

    Background  

    Multiple sequence alignment (MSA) is a useful tool in bioinformatics. Although many MSA algorithms have been developed, there is still room for improvement in accuracy and speed. In the alignment of a family of protein sequences, global MSA algorithms perform better than local ones in many cases, while local ones perform better than global ones when some sequences have long insertions or deletions (indels) relative to others. Many recent leading MSA algorithms have incorporated pairwise alignment information obtained from a mixture of sources into their scoring system to improve accuracy of alignment containing long indels.  相似文献   

    6.
    Multiple sequence alignment is one of the dominant problems in computational molecular biology. Numerous scoring functions and methods have been proposed, most of which result in NP-hard problems. In this paper we propose for the first time a general formulation for multiple alignment with arbitrary gap-costs based on an integer linear program (ILP). In addition we describe a branch-and-cut algorithm to effectively solve the ILP to optimality. We evaluate the performances of our approach in terms of running time and quality of the alignments using the BAliBase database of reference alignments. The results show that our implementation ranks amongst the best programs developed so far.  相似文献   

    7.
    Gap costs for multiple sequence alignment   总被引:6,自引:0,他引:6  
    Standard methods for aligning pairs of biological sequences charge for the most common mutations, which are substitutions, deletions and insertions. Because a single mutation may insert or delete several nucleotides, gap costs that are not directly proportional to gap length are usually the most effective. How to extend such gap costs to alignments of three or more sequences is not immediately obvious, and a variety of approaches have been taken. This paper argues that, since gap and substitution costs together specify optimal alignments, they should be defined using a common rationale. Specifically, a new definition of gap costs for multiple alignments is proposed and compared with previous ones. Since the new definition links a multiple alignment's cost to that of its pairwise projections, it allows knowledge gained about two-sequence alignments to bear on the multiple alignment problem. Also, such linkage is a key element of recent algorithms that have rendered practical the simultaneous alignment of as many as six sequences.  相似文献   

    8.
    One of the key components in protein structure prediction by protein threading technique is to choose the best overall template for a given target sequence after all the optimal sequence-template alignments are generated. The chosen template should have the best alignment with the target sequence since the three-dimensional structure of the target sequence is built on the sequence-template alignment. The traditional method for template selection is called Z-score, which uses a statistical test to rank all the sequence-template alignments and then chooses the first-ranked template for the sequence. However, the calculation of Z-score is time-consuming and not suitable for genome-scale structure prediction. Z-scores are also hard to interpret when the threading scoring function is the weighted sum of several energy items of different physical meanings. This paper presents a support vector machine (SVM) regression approach to directly predict the alignment accuracy of a sequence-template alignment, which is used to rank all the templates for a specific target sequence. Experimental results on a large-scale benchmark demonstrate that SVM regression performs much better than the composition-corrected Z-score method. SVM regression also runs much faster than the Z-score method.  相似文献   

    9.
    Phylogenies are often thought to be more dependent upon the specifics of the sequence alignment rather than on the method of reconstruction. Simulation of sequences containing insertion and deletion events was performed in order to determine the role that alignment accuracy plays during phylogenetic inference. Data sets were simulated for pectinate, balanced, and random tree shapes under different conditions (ultrametric equal branch length, ultrametric random branch length, nonultrametric random branch length). Comparisons between hypothesized alignments and true alignments enabled determination of two measures of alignment accuracy, that of the total data set and that of individual branches. In general, our results indicate that as alignment error increases, topological accuracy decreases. This trend was much more pronounced for data sets derived from more pectinate topologies. In contrast, for balanced, ultrametric, equal branch length tree shapes, alignment inaccuracy had little average effect on tree reconstruction. These conclusions are based on average trends of many analyses under different conditions, and any one specific analysis, independent of the alignment accuracy, may recover very accurate or inaccurate topologies. Maximum likelihood and Bayesian, in general, outperformed neighbor joining and maximum parsimony in terms of tree reconstruction accuracy. Results also indicated that as the length of the branch and of the neighboring branches increase, alignment accuracy decreases, and the length of the neighboring branches is the major factor in topological accuracy. Thus, multiple-sequence alignment can be an important factor in downstream effects on topological reconstruction.  相似文献   

    10.
    While most of the recent improvements in multiple sequence alignment accuracy are due to better use of vertical information, which include the incorporation of consistency-based pairwise alignments and the use of profile alignments, we observe that it is possible to further improve accuracy by taking into account alignment of neighboring residues when aligning two residues, thus making better use of horizontal information. By modifying existing multiple alignment algorithms to make use of horizontal information, we show that this strategy is able to consistently improve over existing algorithms on a few sets of benchmark alignments that are commonly used to measure alignment accuracy, and the average improvements in accuracy can be as much as 1–3% on protein sequence alignment and 5–10% on DNA/RNA sequence alignment. Unlike previous algorithms, consistent average improvements can be obtained across all identity levels.  相似文献   

    11.

    Background  

    Sequence alignment is a common tool in bioinformatics and comparative genomics. It is generally assumed that multiple sequence alignment yields better results than pair wise sequence alignment, but this assumption has rarely been tested, and never with the control provided by simulation analysis. This study used sequence simulation to examine the gain in accuracy of adding a third sequence to a pair wise alignment, particularly concentrating on how the phylogenetic position of the additional sequence relative to the first pair changes the accuracy of the initial pair's alignment as well as their estimated evolutionary distance.  相似文献   

    12.
    13.

    Background  

    Multiple sequence alignment algorithms are very important tools in molecular biology today. Accurate alignment of proteins is central to several areas such as homology modelling, docking studies, understanding evolutionary trends and study of structure-function relationships. In recent times, improvement of existing progressing programs and implementation of new iterative algorithms have made a significant change in this field.  相似文献   

    14.

    Background  

    Fast seed-based alignment heuristics such as BLAST and BLAT have become indispensable tools in comparative genomics for all studies aiming at the evolutionary relations of proteins, genes, and non-coding RNAs. This is true in particular for the large mammalian genomes. The sensitivity and specificity of these tools, however, crucially depend on parameters such as seed sizes or maximum expectation values. In settings that require high sensitivity the amount of short local match fragments easily becomes intractable. Then, fragment chaining is a powerful leverage to quickly connect, score, and rank the fragments to improve the specificity.  相似文献   

    15.

    Background

    When inferring phylogenetic trees different algorithms may give different trees. To study such effects a measure for the distance between two trees is useful. Quartet distance is one such measure, and is the number of quartet topologies that differ between two trees.

    Results

    We have derived a new algorithm for computing the quartet distance between a pair of general trees, i.e. trees where inner nodes can have any degree ≥ 3. The time and space complexity of our algorithm is sub-cubic in the number of leaves and does not depend on the degree of the inner nodes. This makes it the fastest algorithm so far for computing the quartet distance between general trees independent of the degree of the inner nodes.

    Conclusions

    We have implemented our algorithm and two of the best competitors. Our new algorithm is significantly faster than the competition and seems to run in close to quadratic time in practice.  相似文献   

    16.
    Adjust quality scores from alignment and improve sequencing accuracy   总被引:2,自引:0,他引:2  
    Li M  Nordborg M  Li LM 《Nucleic acids research》2004,32(17):5183-5191
    In shotgun sequencing, statistical reconstruction of a consensus from alignment requires a model of measurement error. Churchill and Waterman proposed one such model and an expectation–maximization (EM) algorithm to estimate sequencing error rates for each assembly matrix. Ewing and Green defined Phred quality scores for base-calling from sequencing traces by training a model on a large amount of data. However, sample preparations and sequencing machines may work under different conditions in practice and therefore quality scores need to be adjusted. Moreover, the information given by quality scores is incomplete in the sense that they do not describe error patterns. We observe that each nucleotide base has its specific error pattern that varies across the range of quality values. We develop models of measurement error for shotgun sequencing by combining the two perspectives above. We propose a logistic model taking quality scores as covariates. The model is trained by a procedure combining an EM algorithm and model selection techniques. The training results in calibration of quality values and leads to a more accurate construction of consensus. Besides Phred scores obtained from ABI sequencers, we apply the same technique to calibrate quality values that come along with Beckman sequencers.  相似文献   

    17.
    ABSTRACT: BACKGROUND: ProGraphMSA is a state-of-the-art multiple sequence alignment tool which produces phylogenetically sensiblegap patterns while maintaining robustness by allowing alternative splicings and errors in the branching pattern ofthe guide tree. RESULTS: This is achieved by incorporating a graph-based sequence representation combined with the advantages of thephylogeny-aware gap placement algorithm of Prank. Further, we account for variations in the substitution patternby implementing context-specific profiles as in CS-Blast and by estimating amino acid frequencies from inputdata. CONCLUSIONS: ProGraphMSA shows good performance and competitive execution times in various benchmarks.  相似文献   

    18.

    Background  

    While substitution matrices can readily be computed from reference alignments, it is challenging to compute optimal or approximately optimal gap penalties. It is also not well understood which substitution matrices are the most effective when alignment accuracy is the goal rather than homolog recognition. Here a new parameter optimization procedure, POP, is described and applied to the problems of optimizing gap penalties and selecting substitution matrices for pair-wise global protein alignments.  相似文献   

    19.

    Background  

    There have been many algorithms and software programs implemented for the inference of multiple sequence alignments of protein and DNA sequences. The "true" alignment is usually unknown due to the incomplete knowledge of the evolutionary history of the sequences, making it difficult to gauge the relative accuracy of the programs.  相似文献   

    20.
    The PSI-BLAST algorithm has been acknowledged as one of the most powerful tools for detecting remote evolutionary relationships by sequence considerations only. This has been demonstrated by its ability to recognize remote structural homologues and by the greatest coverage it enables in annotation of a complete genome. Although recognizing the correct fold of a sequence is of major importance, the accuracy of the alignment is crucial for the success of modeling one sequence by the structure of its remote homologue. Here we assess the accuracy of PSI-BLAST alignments on a stringent database of 123 structurally similar, sequence-dissimilar pairs of proteins, by comparing them to the alignments defined on a structural basis. Each protein sequence is compared to a nonredundant database of the protein sequences by PSI-BLAST. Whenever a pair member detects its pair-mate, the positions that are aligned both in the sequential and structural alignments are determined, and the alignment sensitivity is expressed as the percentage of these positions out of the structural alignment. Fifty-two sequences detected their pair-mates (for 16 pairs the success was bi-directional when either pair member was used as a query). The average percentage of correctly aligned residues per structural alignment was 43.5+/-2.2%. Other properties of the alignments were also examined, such as the sensitivity vs. specificity and the change in these parameters over consecutive iterations. Notably, there is an improvement in alignment sensitivity over consecutive iterations, reaching an average of 50.9+/-2.5% within the five iterations tested in the current study.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号