首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To predict how climate change will influence populations, it is necessary to understand the mechanisms, particularly microevolution and phenotypic plasticity, that allow populations to persist in novel environmental conditions. Although evidence for climate-induced phenotypic change in populations is widespread, evidence documenting that these phenotypic changes are due to microevolution is exceedingly rare. In this study, we use 32 years of genetic data (17 complete generations) to determine whether there has been a genetic change towards earlier migration timing in a population of pink salmon that shows phenotypic change; average migration time occurs nearly two weeks earlier than it did 40 years ago. Experimental genetic data support the hypothesis that there has been directional selection for earlier migration timing, resulting in a substantial decrease in the late-migrating phenotype (from more than 30% to less than 10% of the total abundance). From 1983 to 2011, there was a significant decrease-over threefold-in the frequency of a genetic marker for late-migration timing, but there were minimal changes in allele frequencies at other neutral loci. These results demonstrate that there has been rapid microevolution for earlier migration timing in this population. Circadian rhythm genes, however, did not show any evidence for selective changes from 1993 to 2009.  相似文献   

2.
The influence of climate change on the fitness of wild populations is often studied in the context of the spring onset of the reproductive season. This focus is relevant for climate influences on reproductive success, but neglects other fitness‐relevant periods (e.g., autumn preparation for overwintering). We examined variation in climate variables (temperature, rainfall, snowfall, and snowpack) across the full annual cycle of Columbian ground squirrels (Urocitellus columbianus) for 21 years. We investigated seasonal climate variables that were associated with fitness variables, climate variables that exhibited directional changes across the study period, and finally observed declines in fitness (?0.03 units/year; total decline = 37%) that were associated with directional changes in climate variables. Annual fitness of adult female ground squirrels was positively associated with spring temperature (= 0.69) and early summer rainfall (= 0.56) and negatively associated with spring snow conditions (= ?0.44 to ?0.66). Across the 21 years, spring snowmelt has become significantly delayed (= 0.48) and summer rainfall became significantly reduced (= ?0.53). Using a standardized partial regression model, we found that directional changes in the timing of spring snowmelt and early summer rainfall (i.e., progressively drier summers) had moderate influences on annual fitness, with the latter statistically significant (ρ = ?0.314 and 0.437, respectively). The summer period corresponds to prehibernation fattening of young and adult ground squirrels. Had we focused on a single point in time (viz. the onset of the breeding season), we would have underestimated the influences of climate change on our population. Rather, we obtained a comprehensive understanding of the influences of climate change on individual fitness by investigating the full lifecycle.  相似文献   

3.
The life history schedules of wild organisms have long attracted scientific interest, and, in light of ongoing climate change, an understanding of their genetic and environmental underpinnings is increasingly becoming of applied concern. We used a multi-generation pedigree and detailed phenotypic records, spanning 18 years, to estimate the quantitative genetic influences on the timing of hibernation emergence in a wild population of Columbian ground squirrels (Urocitellus columbianus). Emergence date was significantly heritable [h(2) = 0.22 ± 0.05 (in females) and 0.34 ± 0.14 (in males)], and there was a positive genetic correlation (r(G) = 0.76 ± 0.22) between male and female emergence dates. In adult females, the heritabilities of body mass at emergence and oestrous date were h(2) = 0.23 ± 0.09 and h(2) = 0.18 ± 0.12, respectively. The date of hibernation emergence has been hypothesized to have evolved so as to synchronize subsequent reproduction with upcoming peaks in vegetation abundance. In support of this hypothesis, although levels of phenotypic variance in emergence date were higher than oestrous date, there was a highly significant genetic correlation between the two (r(G) = 0.98 ± 0.01). Hibernation is a prominent feature in the annual cycle of many small mammals, but our understanding of its influences lags behind that for phenological traits in many other taxa. Our results provide the first insight into its quantitative genetic influences and thus help contribute to a more general understanding of its evolutionary significance.  相似文献   

4.
Numerous studies of wild animal species have documented that population level responses to environmental change are underpinned by individual level phenotypic plasticity. However, where the relationship between an individual trait and a climate variable occurs when both show a trend over time, phenotypic plasticity may be confounded by ageing. We investigated between and within individual change in laying date in the wandering albatross Diomedea exulans, a long‐lived species experiencing a dramatic decline in population size. Laying date has advanced over the last three decades. A mean‐centering analysis demonstrated that this pattern was driven by within‐individual changes as opposed to appearance or disappearance of phenotypes. Furthermore, a lack of between individual effect suggested the change resulted from ageing as opposed to phenotypic plasticity. Females varied significantly in rate of advance, such that those with low past reproductive rates exhibited a negative temporal trend in laying date, whereas birds with moderate to high past reproductive performance showed little change. The population trend was therefore driven by a subset with low past breeding success. An analysis of effects of timing of breeding on breeding success revealed stabilizing selection for relative laying date. Furthermore, current breeding success was positively related to past success rate, which suggests that there may be indirect selection against plasticity in this population. Our results show that population trends can arise from individual level change unrelated to prevailing environmental conditions, thus demonstrating the importance of longitudinal analyses in the interpretation of climate change effects.  相似文献   

5.
Abstract Despite their importance in evolutionary biology, heritability and the strength of natural selection have rarely been estimated in wild populations of iteroparous species or have usually been limited to one particular event during an organism's lifetime. Using an animal-model restricted maximum likelihood and phenotypic selection models, we estimated quantitative genetic parameters and the strength of lifetime selection on parturition date and litter size at birth in a natural population of North American red squirrels, Tamiasciurus hudsonicus. Litter size at birth and parturition date had low heritabilities ( h2 = 0.15 and 0.16, respectively). We considered potential effects of temporal environmental covariances between phenotypes and fitness and of spatial environmental heterogeneity in estimates of selection. Selection favored early breeders and females that produced litter sizes close to the population average. Stabilizing selection on litter size at birth may occur because of a trade-off between number of offspring produced per litter and offspring survival or a trade-off between a female's fecundity and her future reproductive success and survival.  相似文献   

6.
Organisms can affect one another's phenotypes when they socially interact. Indirect genetic effects occur when an individual's phenotype is affected by genes expressed in another individual. These heritable effects can enhance or reduce adaptive potential, thereby accelerating or reversing evolutionary change. Quantifying these social effects is therefore crucial for our understanding of evolution, yet estimates of indirect genetic effects in wild animals are limited to dyadic interactions. We estimated indirect phenotypic and genetic effects, and their covariance with direct effects, for the date of spring breeding in North American red squirrels (Tamiasciurus hudsonicus) living in an array of territories of varying spatial proximity. Additionally, we estimated indirect effects and the strength of selection at low and high population densities. Social effects of neighbours on the date of spring breeding were different from zero at high population densities but not at low population densities. Indirect phenotypic effects accounted for a larger amount of variation in the date of breeding than differences attributable to the among‐individual variance, suggesting social interactions are important for determining breeding dates. The genetic component to these indirect effects was however not statistically significant. We therefore showcase a powerful and flexible method that will allow researchers working in organisms with a range of social systems to estimate indirect phenotypic and genetic effects, and demonstrate the degree to which social interactions can influence phenotypes, even in a solitary species.  相似文献   

7.
Rapid climate change is likely to impose strong selection pressures on traits important for fitness, and therefore, microevolution in response to climate-mediated selection is potentially an important mechanism mitigating negative consequences of climate change. We reviewed the empirical evidence for recent microevolutionary responses to climate change in longitudinal studies emphasizing the following three perspectives emerging from the published data. First, although signatures of climate change are clearly visible in many ecological processes, similar examples of microevolutionary responses in literature are in fact very rare. Second, the quality of evidence for microevolutionary responses to climate change is far from satisfactory as the documented responses are often - if not typically - based on nongenetic data. We reinforce the view that it is as important to make the distinction between genetic (evolutionary) and phenotypic (includes a nongenetic, plastic component) responses clear, as it is to understand the relative roles of plasticity and genetics in adaptation to climate change. Third, in order to illustrate the difficulties and their potential ubiquity in detection of microevolution in response to natural selection, we reviewed the quantitative genetic studies on microevolutionary responses to natural selection in the context of long-term studies of vertebrates. The available evidence points to the overall conclusion that many responses perceived as adaptations to changing environmental conditions could be environmentally induced plastic responses rather than microevolutionary adaptations. Hence, clear-cut evidence indicating a significant role for evolutionary adaptation to ongoing climate warming is conspicuously scarce.  相似文献   

8.
Understanding the causes of variation in biotic interaction strength and phenotypic selection remains one of the outstanding goals of evolutionary ecology. Here we examine the variation in strength of interactions between two seed predators, common crossbills (Loxia curvirostra) and European red squirrels (Sciurus vulgaris), and mountain pine (Pinus uncinata) at and below tree limit in the Pyrenees, and how this translates into phenotypic selection. Seed predation by crossbills increased whereas seed predation by squirrels decreased with increasing elevation and as the canopy became more open. Overall, seed predation by crossbills averaged about twice that by squirrels, and the intensity of selection exerted by crossbills averaged between 2.6 and 7.5 times greater than by squirrels. The higher levels of seed predation by crossbills than squirrels were related to the relatively open nature of most of the forests, and the higher intensity of selection exerted by crossbills resulted from their higher levels of seed predation. However, most of the differences in selection intensity between crossbills and squirrels were the result of habitat features having a greater effect on the foraging behavior of squirrels than of crossbills, causing selection to be much lower for squirrels than for crossbills.  相似文献   

9.
Genetic and plastic responses of a northern mammal to climate change   总被引:11,自引:0,他引:11  
Climate change is predicted to be most severe in northern regions and there has been much interest in to what extent organisms can cope with these changes through phenotypic plasticity or microevolutionary processes. A red squirrel population in the southwest Yukon, Canada, faced with increasing spring temperatures and food supply has advanced the timing of breeding by 18 days over the last 10 years (6 days per generation). Longitudinal analysis of females breeding in multiple years suggests that much of this change in parturition date can be explained by a plastic response to increased food abundance (3.7 days per generation). Significant changes in breeding values (0.8 days per generation), were in concordance with predictions from the breeder's equation (0.6 days per generation), and indicated that an evolutionary response to strong selection favouring earlier breeders also contributed to the observed advancement of this heritable trait. The timing of breeding in this population of squirrels, therefore, has advanced as a result of both phenotypic changes within generations, and genetic changes among generations in response to a rapidly changing environment.  相似文献   

10.
Projecting the fates of populations under climate change is one of global change biology's foremost challenges. Here, we seek to identify the contributions that temperature‐mediated local adaptation and plasticity make to spatial variation in nesting phenology, a phenotypic trait showing strong responses to warming. We apply a mixed modeling framework to a Britain‐wide spatiotemporal dataset comprising >100 000 records of first egg dates from four single‐brooded passerine bird species. The average temperature during a specific time period (sliding window) strongly predicts spatiotemporal variation in lay date. All four species exhibit phenological plasticity, advancing lay date by 2–5 days °C?1. The initiation of this sliding window is delayed further north, which may be a response to a photoperiod threshold. Using clinal trends in phenology and temperature, we are able to estimate the temperature sensitivity of selection on lay date (B), but our estimates are highly sensitive to the temporal position of the sliding window. If the sliding window is of fixed duration with a start date determined by photoperiod, we find B is tracked by phenotypic plasticity. If, instead, we allow the start and duration of the sliding window to change with latitude, we find plasticity does not track B, although in this case, at odds with theoretical expectations, our estimates of B differ across latitude vs. longitude. We argue that a model combining photoperiod and mean temperature is most consistent with current understanding of phenological cues in passerines, the results from which suggest that each species could respond to projected increases in spring temperatures through plasticity alone. However, our estimates of B require further validation.  相似文献   

11.
Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed‐effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R2 = 0.79, marginal R2 = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree‐days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13‐day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower‐latitude populations have greater plasticity (+16 days) compared to higher‐latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change.  相似文献   

12.
Although it has been widely asserted that plants mate assortatively by flowering time, there is virtually no published information on the strength or causes of phenological assortment in natural populations. When strong, assortative mating can accelerate the evolution of plant reproductive phenology through its inflationary effect on genetic variance. We estimated potential assortative mating for flowering date in 31 old‐field species in Ontario, Canada. For each species, we constructed a matrix of pairwise mating probabilities from the individual flowering schedules, that is the number of flower deployed on successive dates. The matrix was used to estimate the phenotypic correlation between mates, ρ, for flowering date. We also developed a measure of flowering synchrony within species, S, based upon the eigenstructure of the mating matrix. The mean correlation between pollen recipients and potential donors for flowering date was  = 0.31 (range: 0.05–0.63). A strong potential for assortative mating was found among species with high variance in flowering date, flowering schedules of short duration and skew towards early flower deployment. Flowering synchrony, S, was negatively correlated with potential assortment (= ?0.49), but we go on to show that although low synchrony is a necessary condition for phenological assortative mating, it may not be sufficient to induce assortment for a given phenological trait. The potential correlation between mates showed no seasonal trend; thus, as climate change imposes selection on phenology through longer growing seasons, spring‐flowering species are no more likely to experience an accelerated evolutionary response than summer species.  相似文献   

13.
Phenotypic plasticity is an important mechanism for populations to respond to fluctuating environments, yet may be insufficient to adapt to a directionally changing environment. To study whether plasticity can evolve under current climate change, we quantified selection and genetic variation in both the elevation (RNE) and slope (RNS) of the breeding time reaction norm in a long‐term (1973–2016) study population of great tits (Parus major). The optimal RNE (the caterpillar biomass peak date regressed against the temperature used as cue by great tits) changed over time, whereas the optimal RNS did not. Concordantly, we found strong directional selection on RNE, but not RNS, of egg‐laying date in the second third of the study period; this selection subsequently waned, potentially due to increased between‐year variability in optimal laying dates. We found individual and additive genetic variation in RNE but, contrary to previous studies on our population, not in RNS. The predicted and observed evolutionary change in RNE was, however, marginal, due to low heritability and the sex limitation of laying date. We conclude that adaptation to climate change can only occur via micro‐evolution of RNE, but this will necessarily be slow and potentially hampered by increased variability in phenotypic optima.  相似文献   

14.
The evolutionary response of organisms to global climate change is expected to be strongly conditioned by preexisting standing genetic variation. In addition, natural selection imposed by global climate change on fitness‐related traits can be heterogeneous over time. We estimated selection of life‐history traits of an entire genetic lineage of the plant Arabidopsis thaliana occurring in north‐western Iberian Peninsula that were transplanted over multiple years into two environmentally contrasting field sites in southern Spain, as southern environments are expected to move progressively northwards with climate change in the Iberian Peninsula. The results indicated that natural selection on flowering time prevailed over that on recruitment. Selection favored early flowering in six of eight experiments and late flowering in the other two. Such heterogeneity of selection for flowering time might be a powerful mechanism for maintaining genetic diversity in the long run. We also found that north‐western A. thaliana accessions from warmer environments exhibited higher fitness and higher phenotypic plasticity for flowering time in southern experimental facilities. Overall, our transplant experiments suggested that north‐western Iberian A. thaliana has the means to cope with increasingly warmer environments in the region as predicted by trends in global climate change models.  相似文献   

15.
The timing of annual life‐history events affects survival and reproduction of all organisms. A changing environment can perturb phenological adaptations and an important question is if populations can evolve fast enough to track the environmental changes. Yet, little is known about selection and evolutionary potential of traits determining the timing of crucial annual events. Migratory species, which travel between different climatic regions, are particularly affected by global environmental changes. To increase our understanding of evolutionary potential and selection of timing traits, we investigated the quantitative genetics of arrival date at the breeding ground using a multigenerational pedigree of a natural great reed warbler (Acrocephalus arundinaceus) population. We found significant heritability of 16.4% for arrival date and directional selection for earlier arrival in both sexes acting through reproductive success, but not through lifespan. Mean arrival date advanced with 6 days over 20 years, which is in exact accordance with our predicted evolutionary response based on the breeder's equation. However, this phenotypic change is unlikely to be caused by microevolution, because selection seems mainly to act on the nongenetic component of the trait. Furthermore, demographical changes could also not account for the advancing arrival date. Instead, a strong correlation between spring temperatures and population mean arrival date suggests that phenotypic plasticity best explains the advancement of arrival date in our study population. Our study dissects the evolutionary and environmental forces that shape timing traits and thereby increases knowledge of how populations cope with rapidly changing environments.  相似文献   

16.
A key component to understanding the evolutionary response to a changing climate is linking underlying genetic variation to phenotypic variation in stress response. Here, we use a genome‐wide association approach (GWAS) to understand the genetic architecture of calcification rates under simulated climate stress. We take advantage of the genomic gradient across the blue mussel hybrid zone (Mytilus edulis and Mytilus trossulus) in the Gulf of Maine (GOM) to link genetic variation with variance in calcification rates in response to simulated climate change. Falling calcium carbonate saturation states are predicted to negatively impact many marine organisms that build calcium carbonate shells – like blue mussels. We sampled wild mussels and measured net calcification phenotypes after exposing mussels to a ‘climate change’ common garden, where we raised temperature by 3°C, decreased pH by 0.2 units and limited food supply by filtering out planktonic particles >5 μm, compared to ambient GOM conditions in the summer. This climate change exposure greatly increased phenotypic variation in net calcification rates compared to ambient conditions. We then used regression models to link the phenotypic variation with over 170 000 single nucleotide polymorphism loci (SNPs) generated by genotype by sequencing to identify genomic locations associated with calcification phenotype, and estimate heritability and architecture of the trait. We identified at least one of potentially 2–10 genomic regions responsible for 30% of the phenotypic variation in calcification rates that are potential targets of natural selection by climate change. Our simulations suggest a power of 13.7% with our study's average effective sample size of 118 individuals and rare alleles, but a power of >90% when effective sample size is 900.  相似文献   

17.
During the past decade, two lines of research have advanced our understanding of micro‐evolution. On the one hand, a number of studies have generated evidence for strong selection on phenotypes ( Kingsolver et al. 2001 ) and the contemporary (sometimes deemed ‘rapid’) evolution of phenotypic traits ( Hendry & Kinnison 1999 ). On the other hand, other studies have sought to identify the genes that underlie ecologically important traits ( Ungerer et al. 2008 ). Over the next decade, micro‐evolutionists might expect considerable progress from the study of contemporary evolution at both the phenotypic and genetic level simultaneously. In this issue of Molecular Ecology, Le Rouzic et al. (2011) present a teaser for this approach. They examined contemporary evolution of an adaptive trait with a well‐studied genetic basis, the number of lateral plates, in threespine stickleback (Gasterosteus aculeatus L.). A time series of 20 years of change for this trait after introduction into a pond in Norway was compared with a similar time series of 12 years following the invasion of a lake in Alaska. Using a modelling approach, the authors then teased apart selection acting upon the phenotype and selection acting on a major effect gene. In both time series, selection was strong and consistent. The models suggested that selection could act directly on the phenotype, or through the gene’s pleiotropic effects.  相似文献   

18.
Many organisms advance their seasonal reproduction in response to global warming. In birds, which regress their gonads to a nonfunctional state each winter, these shifts are ultimately constrained by the time required for gonadal development in spring. Gonadal development is photoperiodically controlled and shows limited phenotypic plasticity in relation to environmental factors, such as temperature. Heritable variation in the time required for full gonadal maturation to be completed, based on both onset and speed of development and resulting in seasonally different gonad sizes among individuals, is thus a crucial prerequisite for an adaptive advancement of seasonal reproduction in response to changing temperatures. We measured seasonal gonadal development in climate‐controlled aviaries for 144 great tit (Parus major) pairs, which consisted of siblings obtained as whole broods from the wild. We show that the extent of ovarian follicle development (follicle size) in early spring is highly heritable (h2 = 0.73) in females, but found no heritability of the extent of testis development in males. However, heritability in females decreased as spring advanced, caused by an increase in environmental variance and a decrease in additive genetic variation. This low heritability of the variation in a physiological mechanism underlying reproductive timing at the time of selection may hamper genetic adaptation to climate change, a key insight as this great tit population is currently under directional selection for advanced egg‐laying.  相似文献   

19.
Climate change is imposing intensified and novel selection pressures on organisms by altering abiotic and biotic environmental conditions on Earth, but studies demonstrating genetic adaptation to climate change mediated selection are still scarce. Evidence is accumulating to indicate that both genetic and ecological constrains may often limit populations' abilities to adapt to large scale effects of climate warming. These constraints may predispose many organisms to respond to climate change with range shifts and phenotypic plasticity, rather than through evolutionary adaptation. In general, broad conclusions about the role of evolutionary adaptation in mitigating climate change induced fitness loss in the wild are as yet difficult to make. Editor's suggested further reading in BioEssays: How will fish that evolved at constant sub‐zero temperatures cope with global warming? Notothenioids as a case study Abstract  相似文献   

20.
Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document microevolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here, we show, using a quantitative genetic framework and six decades of life‐history data on two free‐living populations of great tits Parus major, that selection estimates for egg‐laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson–Price Identity were similar to those based on the multivariate breeder's equation (MVBE), indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号