首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual reproduction is one of the most taxonomically conserved traits, yet sex‐determining mechanisms (SDMs) are quite diverse. For instance, there are numerous forms of environmental sex determination (ESD), in which an organism’s sex is determined not by genotype, but by environmental factors during development. Important questions remain regarding transitions between SDMs, in part because the organisms exhibiting unique mechanisms often make difficult study organisms. One potential solution is to utilize mutant strains in model organisms better suited to answering these questions. We have characterized two such strains of the model nematode Caenorhabditis elegans. These strains harbour temperature‐sensitive mutations in key sex‐determining genes. We show that they display a sex ratio reaction norm in response to rearing temperature similar to other organisms with ESD. Next, we show that these mutations also cause deleterious pleiotropic effects on overall fitness. Finally, we show that these mutations are fundamentally different at the genetic sequence level. These strains will be a useful complement to naturally occurring taxa with ESD in future research examining the molecular basis of and the selective forces driving evolutionary transitions between sex determination mechanisms.  相似文献   

2.
1. Understanding individual and population responses to climate change is emerging as an important challenge. Because many phenotypic traits are sensitive to environmental conditions, directional climate change could significantly alter trait distribution within populations and may generate an evolutionary response. 2. In species with environment-dependent sex determination, climate change may lead to skewed sex ratios at hatching or birth. However, there are virtually no empirical data on the putative link between climatic parameters and sex ratios from natural populations. 3. We monitored a natural population of viviparous lizards with temperature-dependent sex determination (Niveoscincus ocellatus) over seven field seasons. Sex ratios at birth fluctuated significantly among years and closely tracked thermal conditions in the field, with the proportion of male offspring increasing in colder years. 4. This is the first study to demonstrate the effect of local climatic conditions (e.g. temperature) on offspring sex ratio fluctuations in a free-living population of a viviparous ectotherm. A succession of warmer-than-usual years (as predicted under many climate-change scenarios) likely would generate female-biased sex ratios at birth, while an increase in interannual variation (as also predicted under climate change scenarios) could lead to significant fluctuations in cohort sex ratios. If cohort sex ratio bias at birth leads to adult sex ratio bias, long-term directional changes in thermal conditions may have important effects on population dynamics in this species.  相似文献   

3.
Four decades ago, it was proposed that environmental sex determination (ESD) evolves when individual fitness depends on the environment in a sex‐specific fashion—a form of condition‐dependent sex allocation. Many biological processes have been hypothesized to drive this sex asymmetry, yet a general explanation for the evolution of sex‐determining mechanisms remains elusive. Here, we develop a mathematical model for a novel hypothesis of the evolution of ESD, and provide a first empirical test using data across turtles. ESD is favored when the sex‐determining environment affects annual survival rates equivalently in males and females, and males and females mature at different ages. We compare this hypothesis to alternative hypotheses, and demonstrate how it captures a crucially different process. This maturation process arises naturally from common life histories and applies more broadly to condition‐dependent sex allocation. Therefore, it has widespread implications for animal taxa. Across turtle species, ESD is associated with greater sex differences in the age at maturity compared to species without ESD, as predicted by our hypothesis. However, the effect is not statistically significant and will require expanded empirical investigation. Given variation among taxa in sex‐specific age at maturity, our survival‐to‐maturity hypothesis may capture common selective forces on sex‐determining mechanisms.  相似文献   

4.
Temperature‐dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years.  相似文献   

5.
Global climate change is of particular concern for small and isolated populations of reptiles with temperature-dependent sex determination because low genetic variation can limit adaptive response in pivotal temperatures, leading to skewed sex ratios. We explore the demographic consequences of skewed sex ratios on the viability of a tuatara population characterized by low genetic diversity. We studied the rare species of tuatara ( Sphenodon guntheri ) on the 4 ha North Brother Island in New Zealand over two nesting seasons and captured 477 individuals, with a 60% male bias in the adult population. Females first breed at 15 years and have extremely low rates of gravidity, producing clutches of three to eight eggs every 9 years. Simulations of the population using population viability analysis showed that the current population is expected to persist for at least 2000 years at hatchling sex ratios of up to 75% male, but populations with 85% male hatchlings are expected to become extinct within approximately 300 years (some eight generations). Incorporation of inbreeding depression increased the probability of extinction under male biased sex ratios, with no simulated populations surviving at hatchling sex ratios >75% male. Because recent models have predicted that climate change could lead to the production of all male S. guntheri hatchlings by 2085, we examined whether periodic intervention to produce mixed or female biased sex ratios would allow the population to survive if only males were produced in natural nests. We show that intervention every 2–3 years could buffer the effects of climate change on population sex ratios, but translocation to cooler environs might be more cost-effective. Climate change threatens tuatara populations because neither modified nesting behaviour nor adaptive response of the pivotal temperature can modify hatchling sex ratios fast enough in species with long generation intervals.  相似文献   

6.
Polymorphisms can lead to genetic isolation if there is differential mating success among conspecifics divergent for a trait. Polymorphism for sex‐determining system may fall into this category, given strong selection for the production of viable males and females and the low success of heterogametic hybrids when sex chromosomes differ (Haldane''s rule). Here we investigated whether populations exhibiting polymorphism for sex determination are genetically isolated, using the viviparous snow skink Carinascincus ocellatus. While a comparatively high elevation population has genotypic sex determination, in a lower elevation population there is an additional temperature component to sex determination. Based on 11,107 SNP markers, these populations appear genetically isolated. “Isolation with Migration” analysis also suggests these populations diverged in the absence of gene flow, across a period encompassing multiple Pleistocene glaciations and likely greater geographic proximity of populations. However, further experiments are required to establish whether genetic isolation may be a cause or consequence of differences in sex determination. Given the influence of temperature on sex in one lineage, we also discuss the implications for the persistence of this polymorphism under climate change.  相似文献   

7.
T Rhen  A Schroeder  J T Sakata  V Huang  D Crews 《Heredity》2011,106(4):649-660
Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the ‘animal model'' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30 °C), but not at a temperature that produces a male-biased sex ratio (32.5 °C). Conversely, dominance variance was significant at the male-biased temperature (32.5 °C), but not at the female-biased temperature (30 °C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD.  相似文献   

8.
Most models of sex allocation distinguish between sequential and simultaneous hermaphrodites, although an intermediate sexual pattern, size‐dependent sex allocation, is widespread in plants. Here we investigated sex allocation in a simultaneous hermaphrodite animal, the tapeworm Schistocephalus solidus, in which adult size is highly variable. Sex allocation was determined using stereological techniques, which allow measuring somatic and reproductive tissues in a common currency, namely volume. We investigated the relationships between individual volume and allocation to different reproductive tissues using an allometric model. One measure of female allocation, yolk gland volume, increased more than proportionally with individual volume. This is in contrast to the measure of male allocation, testis volume, which showed a strong tendency to increase less than proportionally with individual volume. Together these patterns led to sex allocation being strongly related to individual volume, with large individuals being more biased towards female allocation. We discuss these findings in the light of current ideas about size‐dependent sex allocation in, primarily, plants and try to extend them to simultaneous hermaphrodite animals.  相似文献   

9.
10.
Mothers that experience different individual or environmental conditions may produce different proportions of male to female offspring. The Trivers‐Willard hypothesis, for instance, suggests that mothers with different qualities (size, health, etc.) will use different sex ratios if maternal quality differentially affects sex‐specific reproductive success. Condition‐dependent, or facultative, sex ratio strategies like these allow multiple sex ratios to coexist within a population. They also create complex population structure due to the presence of multiple maternal conditions. As a result, modeling facultative sex ratio evolution requires not only sex ratio strategies with multiple components, but also two‐sex population models with explicit stage structure. To this end, we combine nonlinear, frequency‐dependent matrix models and multidimensional adaptive dynamics to create a new framework for studying sex ratio evolution. We illustrate the applications of this framework with two case studies where the sex ratios depend one of two possible maternal conditions (age or quality). In these cases, we identify evolutionarily singular sex ratio strategies, find instances where one maternal condition produces exclusively male or female offspring, and show that sex ratio biases depend on the relative reproductive value ratios for each sex.  相似文献   

11.
Abstract The jacky dragon, Amphibolurus muricatus (White, ex Shaw 1790) is a medium sized agamid lizard from the southeast of Australia. Laboratory incubation trials show that this species possesses temperature‐dependent sex determination. Both high and low incubation temperatures produced all female offspring, while varying proportions of males hatched at intermediate temperatures. Females may lay several clutches containing from three to nine eggs during the spring and summer. We report the first field nest temperature recordings for a squamate reptile with temperature‐dependent sex determination. Hatchling sex is determined by nest temperatures that are due to the combination of daily and seasonal weather conditions, together with maternal nest site selection. Over the prolonged egg‐laying season, mean nest temperatures steadily increase. This suggests that hatchling sex is best predicted by the date of egg laying, and that sex ratios from field nests will vary over the course of the breeding season. Lizards hatching from eggs laid in the spring (October) experience a longer growing season and should reach a larger body size by the beginning of their first reproductive season, compared to lizards from eggs laid in late summer (February). Adult male A. muricatus attain a greater maximum body size and have relatively larger heads than females, possibly as a consequence of sexual selection due to male‐male competition for territories and mates. If reproductive success in males increases with larger body size, then early hatching males may obtain a greater fitness benefit as adults, compared to males that hatch in late summer. We hypothesize that early season nests should produce male‐biased sex ratios, and that this provides an adaptive explanation for temperature‐dependent sex determination in A. muricatus.  相似文献   

12.
Maternal and environmental factors are important sources of phenotypic variation because both factors influence offspring traits in ways that impact offspring and maternal fitness. The present study explored the effects of maternal factors (maternal body size, egg size, yolk‐steroid allocation, and oviposition‐site choice) and seasonally‐variable environmental factors on offspring phenotypes and sex ratios in a multi‐clutching lizard with environmental sex determination (Amphibolurus muricatus). Maternal identity had strong effects on offspring morphology, but the nature of maternal effects differed among successive clutches produced by females throughout the reproductive season (i.e. maternal identity by environment interactions). The among‐female and among‐clutch variation in offspring traits (including sex ratios) was not mediated through maternal body size, egg size, or variation in yolk steroid hormones. This lack of nongenetic maternal effects suggests that phenotypic variation may be generated by gene by environment interactions. These results demonstrate a significant genetic component to variation in offspring phenotypes, including sex ratios, even in species with environmental sex determination. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 256–266.  相似文献   

13.
Theory suggests that genetic conflicts drive turnovers between sex‐determining mechanisms, yet these studies only apply to cases where sex allocation is independent of environment or condition. Here, we model parent–offspring conflict in the presence of condition‐dependent sex allocation, where the environment has sex‐specific fitness consequences. Additionally, one sex is assumed to be more costly to produce than the other, which leads offspring to favor a sex ratio less biased toward the cheaper sex in comparison to the sex ratio favored by mothers. The scope for parent–offspring conflict depends on the relative frequency of both environments: when one environment is less common than the other, parent–offspring conflict can be reduced or even entirely absent, despite a biased population sex ratio. The model shows that conflict‐driven invasions of condition‐independent sex factors (e.g., sex chromosomes) result either in the loss of condition‐dependent sex allocation, or, interestingly, lead to stable mixtures of condition‐dependent and condition‐independent sex factors. The latter outcome corresponds to empirical observations in which sex chromosomes are present in organisms with environment‐dependent sex determination. Finally, conflict can also favor errors in environmental perception, potentially resulting in the loss of condition‐dependent sex allocation without genetic changes to sex‐determining loci.  相似文献   

14.
Evolutionary theory predicts that dioecious species should produce a balanced primary sex ratio maintained by frequency-dependent selection. Organisms with environmental sex determination, however, are vulnerable to maladaptive sex ratios, because environmental conditions vary spatio-temporally. For reptiles with temperature-dependent sex determination, nest-site choice is a behavioural maternal effect that could respond to sex-ratio selection, as mothers could adjust offspring sex ratios by choosing nest sites that will have particular thermal properties. This theoretical prediction has generated decades of empirical research, yet convincing evidence that sex-ratio selection is influencing nesting behaviours remains absent. Here, we provide the first experimental evidence from nature that sex-ratio selection, rather than only viability selection, is probably an important component of nest-site choice in a reptile with temperature-dependent sex determination. We compare painted turtle (Chrysemys picta) neonates from maternally selected nest sites with those from randomly selected nest sites, observing no substantive difference in hatching success or survival, but finding a profound difference in offspring sex ratio in the direction expected based on historical records. Additionally, we leverage long-term data to reconstruct our sex ratio results had the experiment been repeated in multiple years. As predicted by theory, our results suggest that sex-ratio selection has shaped nesting behaviour in ways likely to enhance maternal fitness.  相似文献   

15.
The pejerrey possesses a genotypic sex determination system driven by the amhy gene and yet shows marked temperature‐dependent sex determination. Sex‐reversed XY females have been found in a naturally breeding population established in Lake Kasumigaura, Japan. These females could mate with normal XY males and generate YY “supermale” individuals that, if viable and fertile, would sire only genotypic male offspring. This study was conducted to verify the viability, gender, and fertility of YY pejerrey and to develop a molecular method for their identification. Production of YY fish was attempted by crossing a thermally sex‐reversed XY female and an XY male, and rearing the progeny until sexual maturation. To identify the presumable YY individuals, we first conducted a PCR analysis using amhy‐specific primers to screen only amhy‐positive (XY and YY) fish. This screening showed that 60.6% of the progeny was amhy‐positive, which suggested the presence of YY fish. We then conducted a second screening by qPCR in order to identify the individuals with two amhy copies in their genome. This screening revealed 13 individuals, all males, with values twice higher than the other 30 amhy‐positive fishes, suggesting they have a YY complement. This assumption as well as the viability, fertility, and “supermale” nature of these individuals was confirmed in progeny tests with XX females that yielded 100% amhy‐positive offspring. These results demonstrate that qPCR can obviate progeny test as a means to identify the genotypic sex and therefore may be useful for the survey of all three possible genotypes in wild populations.  相似文献   

16.
17.
Under certain environmental situations, selection may favour the ability of females to adjust the sex ratio of their offspring. Two recent studies have suggested that viviparous scincid lizards can modify the sex ratio of the offspring they produce in response to the operational sex ratio (OSR). Both of the species in question belong to genera that have also recently been shown to exhibit temperature-dependent sex determination (TSD). Here we test whether pregnant montane water skinks (Eulamprus tympanum) utilise TSD to select offspring sex in response to population wide imbalances in the OSR, by means of active thermoregulation. We use a combination of laboratory and field-based experiments, and conduct the first field-based test of this hypothesis by maintaining females in outdoor enclosures of varying OSR treatments throughout pregnancy. Although maternal body temperature during pregnancy was influenced by OSR, the variation in temperature was not great enough to affect litter sex ratios or any other phenotypic traits of the offspring.  相似文献   

18.
Individuals within a population often differ considerably in size or resource status as a result of environmental variation. In these circumstances natural selection would favour organisms not with a single, genetically determined allocation, but with a genetically determined allocation rule specifying allocation in relation to size or environment. Based on a graphical analysis of a simple evolutionarily stable strategy (ESS) model for herbaceous perennial plants, we aim to determine how cosexual plants within a population should simultaneously adjust their reproductive allocation and sex allocation to their size. We find that if female fitness gain is a linear function of resource investment, then a fixed amount of resources should be allocated to male function, and to post‐breeding survival as well, for individuals above a certain size threshold. The ESS resource allocation to male function, female function, and post‐breeding survival positively correlate if both male and female fitness gains are a saturating function of resource investment. Plants smaller than the size threshold are expected to be either nonreproductive or functionally male only.  相似文献   

19.
Sex‐determining mechanisms are broadly categorised as being based on either genetic or environmental factors. Vertebrate sex determination exhibits remarkable diversity but displays distinct phylogenetic patterns. While all eutherian mammals possess XY male heterogamety and female heterogamety (ZW) is ubiquitous in birds, poikilothermic vertebrates (fish, amphibians and reptiles) exhibit multiple genetic sex‐determination (GSD) systems as well as environmental sex determination (ESD). Temperature is the factor controlling ESD in reptiles and temperature‐dependent sex determination (TSD) in reptiles has become a focal point in the study of this phenomenon. Current patterns of climate change may cause detrimental skews in the population sex ratios of reptiles exhibiting TSD. Understanding the patterns of variation, both within and among populations and linking such patterns with the selection processes they are associated with, is the central challenge of research aimed at predicting the capacity of populations to adapt to novel conditions. Here we present a conceptual model that innovates by defining an individual reaction norm for sex determination as a range of incubation temperatures. By deconstructing individual reaction norms for TSD and revealing their underlying interacting elements, we offer a conceptual solution that explains how variation among individual reaction norms can be inferred from the pattern of population reaction norms. The model also links environmental variation with the different patterns of TSD and describes the processes from which they may arise. Specific climate scenarios are singled out as eco‐evolutionary traps that may lead to demographic extinction or a transition to either male or female heterogametic GSD. We describe how the conceptual principles can be applied to interpret TSD data and to explain the adaptive capacity of TSD to climate change as well as its limits and the potential applications for conservation and management programs.  相似文献   

20.
Abstract It has been proposed that relative allocation to female function increases with plant size in animal‐pollinated species. Previous investigations in several monoecious Sagittaria species seem to run contrary to the prediction of size‐dependent sex allocation (SDS), throwing doubt on the generalization of SDS. Plant size, phenotypic gender, and flower production were measured in experimental populations of an aquatic, insect‐pollinated herb Sagittaria trifolia (Alismataceae) under highly different densities. The comparison of ramets produced clonally can reduce confounding effects from genetic and environmental factors. In the high‐density population, 48% of ramets were male without female flowers, but in the low‐density population all ramets were monoecious. We observed allometric growth in reproductive allocation with ramet size, as evident in biomass of reproductive structures and number of flowers. However, within both populations female and male flower production were isometric with ramet size, in contrast to an allometric growth in femaleness as predicted by SDS. Phenotypic gender was not related to ramet size in either population. The results indicated that large plants may increase both female and male function even in animal‐pollinated plants, pointing towards further studies to test the hypothesis of size‐dependent sex allocation using different allocation currencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号