首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A linkage map of the ruff (Philomachus pugnax) genome was constructed based on segregation analysis of 58 microsatellite loci from 381 captive‐bred individuals spanning fourteen breeding years and comprising 64 families. Twenty‐eight of the markers were resolved into seven linkage groups and five single marker loci, homologous to known chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) chromosomes. Linkage groups range from 10.1 to 488.7 cM in length and covered a total map distance of 641.6 cM, corresponding to an estimated 30–35% coverage of the ruff genome, with a mean spacing of 22.9 cM between loci. Through comparative mapping, we are able to assign linkage groups Ppu1, Ppu2, Ppu6, Ppu7, Ppu10, Ppu13, and PpuZ to chromosomes and identify several intrachromosomal rearrangements between the homologs of chicken, zebra finch, and ruff microsatellite loci. This is the first linkage map created in the ruff and is a major step toward providing genomic resources for this enigmatic species. It will provide an essential framework for mapping of phenotypically and behaviorally important loci in the ruff.  相似文献   

2.
Elucidation of the sex‐determination mechanism in flathead grey mullet (Mugil cephalus) is required to exploit its economic potential by production of genetically determined monosex populations and application of hormonal treatment to parents rather than to the marketed progeny. Our objective was to construct a first‐generation linkage map of the M. cephalus in order to identify the sex‐determining region and sex‐determination system. Deep‐sequencing data of a single male was assembled and aligned to the genome of Nile tilapia (Oreochromis niloticus). A total 245 M. cephalus microsatellite markers were designed, spanning the syntenic tilapia genome assembly at intervals of 10 Mb. In the mapping family of full‐sib progeny, 156 segregating markers were used to construct a first‐generation linkage map of 24 linkage groups (LGs), corresponding to the number of chromosomes. The linkage map spanned approximately 1200 cM with an average inter‐marker distance of 10.6 cM. Markers segregating on LG9 in two independent mapping families showed nearly complete concordance with gender (R2 = 0.95). The sex determining locus was fine mapped within an interval of 8.6 cM on LG9. The sex of offspring was determined only by the alleles transmitted from the father, thus indicating an XY sex‐determination system.  相似文献   

3.
To establish a molecular‐marker‐assisted system of breeding and genetic study for Laminaria japonica Aresch., amplified fragment length polymorphism (AFLP) was used to construct a genetic linkage map of L. japonica featuring 230 progeny of F2 cross population. Eighteen primer combinations produced 370 polymorphic loci and 215 polymorphic loci segregated in a 3:1 Mendelian segregation ratio (P 0.05). Of the 215 segregated loci, 142 were ordered into 27 linkage groups. The length of the linkage groups ranged from 6.7 to 90.3 centimorgans (cM) with an average length of 49.6 cM, and the total length was 1,085.8 cM, which covered 68.4% of the estimated 1,586.9 cM genome. The number of mapped markers on each linkage group ranged from 2 to 12, averaging 5.3 markers per group. The average density of the markers was 1 per 9.4 cM. Based on the marker density and the resolution of the map, the constructed linkage map can satisfy the need for quantitative trait locus (QTL) location and molecular‐marker‐assisted breeding for Laminaria.  相似文献   

4.
Zoysiagrass (Zoysia spp.), belonging to the genus Zoysia in the subfamily Chloridoideae, is widely used in domestic lawns, sports fields and as forage. We constructed high‐density genetic maps of Zoysia japonica using a restriction site‐associated DNA sequencing (RAD‐Seq) approach and an F1 mapping population derived from a cross between ‘Carrizo’ and ‘El Toro’. Two linkage maps were constructed, one for each of the parents. A map consisting of 2408 RAD markers distributed on 21 linkage groups was constructed for ‘Carrizo’. Another map with 1230 RAD markers mapped on 20 linkage groups was constructed for ‘El Toro’. The average distance between adjacent markers of the two maps was at 0.56 and 1.4 cM, respectively. Comparative genomics analysis was carried out among zoysiagrass, rice and sorghum genomes and a highly conserved collinearity in the gene order was observed among the three genomes. Chromosome collinearity was disrupted at centromeric regions for each chromosome pair between zoysiagrass and sorghum genomes. However, no obvious synteny gaps were observed across the centromeric regions between zoysiagrass and rice genomes. Two homologous chromosomes for each of the 10 sorghum chromosomes were found in the zoysiagrass genome, indicating an allotetraploid origin for zoysiagrass. The reduction of the basic chromosome number from 12 to 10 in chloridoids and panicoids took place via independent single‐step nested chromosome fusion events after the two subfamilies diverged from a common ancestor. The genetic maps will assist in genome sequence assembly, targeted gene isolation and comparative genomic analyses among grasses.  相似文献   

5.
Allotetraploidy of Zoysia species with 2n=40 based on a RFLP genetic map   总被引:2,自引:0,他引:2  
 A RFLP linkage map of Zoysia spp. (2n=40), a warm-season turfgrass, was constructed by using the self-pollinated progenies obtained from an interspecific hybrid. Out of 115 DNA clones tested, 100 (87.0%), including 55 genomic clones, 38 cDNA clones, and seven gene clones encoding photosynthetic enzymes showed allelic-RFLP banding patterns among the parental accessions. We found that 26 probes detected two or more loci segregating in the self-pollinated progenies independently. The RFLP linkage map of Zoysia spp. consists of 115 loci in 22 linkage groups ranging in size from 12.5 cM to 141.3 cM with a total map distance of 1506 cM. Six RFLP loci (5.4%) showed significant segregation distortion (P<0.01). Two loci out of six were mapped to linkage group II, and another two loci were mapped to group VII. In the RFLP linkage map of zoysiagrass, five pairs of linkage groups sharing a series of duplicated loci with approximately the same order were identified. Therefore, we conclude that Zoysia spp. with 2n=40 should be considered as allotetraploids, which might have evolved from progenitors with a basic chromosome number of ten (x=10). Received: 20 March 1998 / Accepted: 17 September 1998  相似文献   

6.
7.
With a "two-way pseudo-testcross" mapping strategy, we applied the amplified fragment length polymorphism (AFLP) markers to construct two moderate density genetic linkage maps for Laminaria. The linkage maps were generated from the 60 progenies of the F1 cross family (Laminaria iongissima Aresch. × L. Japonica Miyabe) with twenty pairs of primer combinations. Of the 333 polymorphic loci scored in 60 progenies, 173 segregated in a 1:1 ratio, corresponding to DNA polymorphisms heterozygous in a single parent, and the other 58 loci existing in both parents followed a 3:1 Mendelian segregation ratio. Among the loci with 1:1 segregating ratios, 79 loci were ordered in 14 linkage groups (648.6 cM) of the paternal map, and 72 loci were ordered in 14 linkage groups (601.9 cM) of the maternal map. The average density of loci was approximately 1 per 8 cM. To Investigate the homologies between two parental maps, we used 58 loci segregated 3:1 for further analysis, and deduced one homologous linkage group. The linkage data developed in these maps will be useful for detecting loci-controlling commercially important traits for Laminaria.  相似文献   

8.
Recent advances in sequencing allow population‐genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction‐site‐associated DNA sequence (RAD‐seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well‐characterized single nucleotide polymorphism (SNP) data set from 21 three‐spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single‐outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population‐genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population‐demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population‐genomic data set, making it especially valuable for nonmodel species.  相似文献   

9.
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) to identify sex‐linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD‐seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non‐native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female‐linked and 19 putatively male‐linked sequences. Four female‐ and eight male‐linked markers amplified in all three life cycle stages. Using one female‐ and one male‐linked marker that were sex‐specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non‐native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD‐seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex‐linked markers in other haplodiplontic macroalgae for which genomes are lacking.  相似文献   

10.
C. Zhu  J. Tong  X. Yu  W. Guo  X. Wang  H. Liu  X. Feng  Y. Sun  L. Liu  B. Fu 《Animal genetics》2014,45(5):699-708
Bighead carp (Aristichthys nobilis) is an important aquaculture fish worldwide. Genetic linkage maps for the species were previously reported, but map resolution remained to be improved. In this study, a second‐generation genetic linkage map was constructed for bighead carp through a pseudo‐testcross strategy using interspecific hybrids between bighead carp and silver carp. Of the 754 microsatellites genotyped in two interspecific mapping families (with 77 progenies for each family), 659 markers were assigned to 24 linkage groups, which were equal to the chromosome numbers of the haploid genome. The consensus map spanned 1917.3 cM covering 92.8% of the estimated bighead carp genome with an average marker interval of 2.9 cM. The length of linkage groups ranged from 52.2 to 133.5 cM with an average of 79.9 cM. The number of markers per linkage group varied from 11 to 55 with an average of 27.5 per linkage group. Normality tests on interval distances of the map showed a non‐normal marker distribution; however, significant correlation was found between the length of linkage group and the number of markers below the 0.01 significance level (two‐tailed). The length of the female map was 1.12 times that of the male map, and the average recombination ratio of female to male was 1.10:1. Visual inspection showed that distorted markers gathered in some linkage groups and in certain regions of the male and female maps. This well‐defined genetic linkage map will provide a basic framework for further genome mapping of quantitative traits, comparative mapping and marker‐assisted breeding in bighead carp.  相似文献   

11.
Japanese lawngrass (Zoysia japonica) and Manila grass (Z. matrella) are the two most important and commonly used Zoysia species. A consensus based SSR linkage map was developed for the genus by combining maps from each species. This used previously constructed maps for two Z. japonica populations and a new map from Z. matrella. The new SSR linkage map for Z. matrella was based on 86 F2 individuals and contained 213 loci and covered a map distance of 1,351.2 cM in 32 linkage groups. Comparison of the three linkage maps constructed from populations with different genetic backgrounds indicated that most markers exhibited a consensus order, although some intervals or regions displayed discrepancy in marker orders or positions. The integrated map comprises 507 loci with a mean interval of 4.1 cM, covering a map distance of 2,066.6 cM in 22 linkage groups. The SSR-based map will allow marker-assisted selection and be useful for the mapping and cloning of economically important genes or quantitative trait loci.  相似文献   

12.
We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.  相似文献   

13.
Using an interspecific cross, a mouse chromosome 8 linkage map spanning 72 cM has been defined by the segregation of restriction fragment length variants. Linkage and genetic distance were established for 10 loci by analysis of 114 meiotic events and indicated the following gene order: (centromere)-Insr-3.5 cM-Plat-26.3 cM-Crryps/Mel/Jund-3.5 cM-Junb/Ucp-10.5 cM-Mt-1-27.2 cM-Acta2-0.9 cM-Aprt. These data provide further definition of mouse chromosome 8 linkage relationships and the relationship between segments of this chromosome and human chromosomes 8, 16, and 19.  相似文献   

14.
The genetic map for alfalfa presented here has eight linkage groups representing the haploid chromosome set of the Medicago species. The genetic map was constructed by ordering the linkage values of 89 RFLP, RAPD, isozyme and morphological markers collected from a segregating population of 138 individuals. The segregating population is self-mated progeny of an F1 hybrid plant deriving from a cross between the diploid (2n=2x=16) yellow-flowered Medicago sativa ssp. quasifalcata and the diploid (2n=2x=16) blue-flowered M. sativa ssp. coerulea. The inheritance of many traits displayed distorted segregation, indicating the presence of lethal loci in the heterozygotic parent plants. In spite of the lack of uniform segregation, linkage groups could be assigned and the order of the markers spanning > 659 centimorgans could be unambiguously determined. This value and the calculated haploid genome size for Medicago (1n=1x=1.0 x 109 bp) gives a ratio of < 1500 kb per centimorgan.  相似文献   

15.
With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F2 mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P > 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.  相似文献   

16.
Construction of an RFLP linkage map for cultivated sunflower   总被引:5,自引:0,他引:5  
 An RFLP linkage map was constructed for cultivated sunflower Helianthus annuus L., based on 271 loci detected by 232 cDNA probes. Ninety-three F2 plants of a cross between inbred lines RHA 271 and HA 234 were used as the mapping population. These genetic markers plus a fertility restoration gene, Rf 1, defined 20 linkage groups, covering 1164 cM of the sunflower genome. Of the 71 loci 202 had codominant genotypic segregation, with the rest showing dominant segregation. Thirty-two of the 232 probes gave multiple locus segregation. There were 39 clusters of tightly linked markers with 0 cM distance among loci. This map has an average marker-to-marker distance of 4.6 cM, with 11 markerless regions exceeding 20 cM. Received: 17 June 1997 / Accepted: 19 June 1997  相似文献   

17.
Restriction‐site‐associated DNA sequencing (RAD‐seq) and related methods are revolutionizing the field of population genomics in nonmodel organisms as they allow generating an unprecedented number of single nucleotide polymorphisms (SNPs) even when no genomic information is available. Yet, RAD‐seq data analyses rely on assumptions on nature and number of nucleotide variants present in a single locus, the choice of which may lead to an under‐ or overestimated number of SNPs and/or to incorrectly called genotypes. Using the Atlantic mackerel (Scomber scombrus L.) and a close relative, the Atlantic chub mackerel (Scomber colias), as case study, here we explore the sensitivity of population structure inferences to two crucial aspects in RAD‐seq data analysis: the maximum number of mismatches allowed to merge reads into a locus and the relatedness of the individuals used for genotype calling and SNP selection. Our study resolves the population structure of the Atlantic mackerel, but, most importantly, provides insights into the effects of alternative RAD‐seq data analysis strategies on population structure inferences that are directly applicable to other species.  相似文献   

18.
Recent enhancement of the pool of known molecular markers for avocado has allowed the construction of the first moderately dense genetic map for this species. Over 300 SSR markers have been characterized and 163 of these were used to construct a map from the reciprocal cross of two Florida cultivars 'Simmonds' and 'Tonnage'. One hundred thirty-five primer pairs amplified 163 usable loci with 20 primer pairs amplifying more than one locus. 'Tonnage' was heterozygous for 152 (93%) loci, whereas 'Simmonds' was heterozygous for 64 (39%). Null alleles were identified at several loci. Linkage maps were produced for both reciprocal crosses and combined to generate a composite linkage map for the F1 population of 715 individuals. The composite map contains 12 linkage groups. Linkage groups ranged in size from 157.3 cM (LG2) to 2.4 cM (LG12) and the number of loci mapped per group ranged from 29 (LG1) to two (LG12). The total map length was 1,087.4 cM. Only seven markers were observed to have segregation distortion (α ≤ 0.05) across both sub-composite (reciprocal) maps. Phenotypic data from traits of horticultural interest are currently being collected on this population with the ultimate goal of identifying useful quantitative trait loci and the development of a marker-assisted selection program.  相似文献   

19.
Small abalone, Haliotis diversicolor, is naturally distributed along the coastal waters of East Asia from Japan to the Philippines. It is an economically important maricultured species in southern China and Taiwan. Genetic linkage maps for small abalone were constructed using a total of 308 simple sequence repeat markers including 297 novel markers. Segregation data on 96 progeny were genotyped using a pseudo-testcross strategy. Sixteen linkage groups were identified in both female and male maps, consistent with the haploid chromosome number. The female linkage map covered 758.3 cM, with an average interval of 5.2 cM. The male linkage map spanned a total genetic distance of 676.2 cM, with an average interval of 4.5 cM. An integrated map was constructed by incorporating the homologous parental linkage groups, resulting in 16 linkage groups with a total of 762.1 cM. Genome coverage of the integrated linkage map was approximately 80.7%. The genetic linkage maps of small abalone may facilitate marker-assisted selection and quantitative trait loci mapping.  相似文献   

20.
Genetic factors controlling quantitative inheritance of grain yield and its components have been intensively investigated during recent decades using diverse populations in maize (Zea mays L.). Notwithstanding this, quantitative trait loci (QTL) for kernel row number (KRN) with large and consistent effect have not been identified. In this study, a linkage map of 150 simple sequence repeat (SSR) loci was constructed by using a population of 500 F2 individuals derived from a cross between elite inbreds Ye478 and Dan340. The linkage map spanned a total of 1478 cM with an average interval of 10.0 cM. A total of 397 F2:3 lines were evaluated across seven diverse environments for mapping QTL for KRN. Some QTL for grain yield and its components had previously been confirmed with this population across environments. A total of 13 QTL for KRN were identified, with each QTL explaining from 3.0 to 17.9% of phenotypic variance. The gene action for KRN was mainly additive to partial dominance. A large-effect QTL (qkrn7) with partial dominance effect accounting for 17.9% of the phenotypic variation for KRN was identified on chromosome 7 near marker umc1865 with consistent gene effect across seven diverse environments. This study has laid a foundation for map-based cloning of this major QTL and for developing molecular markers for marker-assisted selection of high KRN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号