首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Members of the Watanabea clade of Trebouxiophyceae are genetically diverse and widely distributed in all kinds of habitats, especially in most terrestrial habitats. Ten new strains of terrestrial algae isolated from the tropical rainforest in China, and four published strains were investigated in this study. Morphological observation and molecular phylogenetic analyses based on the 18S, ITS, rbcL, and tufA genes were used to identify the new strains. Four previously described species were reinvestigated to supplement molecular data and autospores’ morphological photographs. The phylogenetic analyses based on 18S only, the concatenated dataset of 18S and ITS, as well as the concatenated dataset of rbcL and tufA, showed the same phylogenetic positions and relationships of these new strains. According to the phylogenetic analysis and morphological comparisons results, we described these 10 strains as four new members within the Watanabea clade, Polulichloris yunnanensis sp. nov., Polulichloris ovale sp. nov., Massjukichlorella orientale sp. nov., and Massjukichlorella minus sp. nov., and two known species, Massjukichlorella epiphytica, and Mysteriochloris nanningensis. Additionally, we provide strong evidence proving that Phyllosiphon, Mysteriochloris, Polulichloris, and Desertella all reproduce through unequal sized autospores.  相似文献   

3.
The family Oocystaceae (Chlorophyta) is a group of morphologically and ultrastructurally distinct green algae that constitute a well‐supported clade in the class Trebouxiophyceae. Despite the family's clear delimitation, which is based on specific cell wall features, only a few members of the Oocystaceae have been examined using data other than morphological. In previous studies of Trebouxiophyceae, after the establishment of molecular phylogeny, the taxonomic status of the family was called into question. The genus Oocystis proved to be paraphyletic and some species were excluded from Oocystaceae, while a few other species were newly redefined as members of this family. We investigated 54 strains assigned to the Oocystaceae using morphological, ultrastructural and molecular data (SSU rRNA and rbcL genes) to clarify the monophyly of and diversity within Oocystaceae. Oonephris obesa and Nephrocytium agardhianum clustered within the Chlorophyceae and thus are no longer members of the Oocystaceae. On the other hand, we transferred the coenobial Willea vilhelmii to the Oocystaceae. Our findings combined with those of previous studies resulted in the most robust definition of the family to date. The division of the family into three subfamilies and five morphological clades was suggested. Taxonomical adjustments in the genera Neglectella, Oocystidium, Oocystis, and Ooplanctella were established based on congruent molecular and morphological data. We expect further taxonomical changes in the genera Crucigeniella, Eremosphaera, Franceia, Lagerheimia, Oocystis, and Willea in the future.  相似文献   

4.
5.
A multi‐gene (SSU, LSU, psbA, and COI) molecular phylogeny of the family Corallinaceae (excluding the subfamilies Lithophylloideae and Corallinoideae) showed a paraphyletic grouping of six monophyletic clades. Pneophyllum and Spongites were reassessed and recircumscribed using DNA sequence data integrated with morpho‐anatomical comparisons of type material and recently collected specimens. We propose Chamberlainoideae subfam. nov., including the type genus Chamberlainium gen. nov., with C. tumidum comb. nov. as the generitype, and Pneophyllum. Chamberlainium is established to include several taxa previously ascribed to Spongites, the generitype of which currently resides in Neogoniolithoideae. Additionally we propose two new genera, Dawsoniolithon gen. nov. (Metagoniolithoideae), with D. conicum comb. nov. as the generitype and Parvicellularium gen. nov. (subfamily incertae sedis), with P. leonardi sp. nov. as the generitype. Chamberlainoideae has no diagnostic morpho‐anatomical features that enable one to assign specimens to it without DNA sequence data, and it is the first subfamily to possess both Type 1 (Chamberlainium) and Type 2 (Pneophyllum) tetra/bisporangial conceptacle roof development. Two characters distinguish Chamberlainium from Spongites: tetra/biasporangial conceptacle chamber diameter (<300 μm in Chamberlainium vs. >300 μm in Spongites) and tetra/bisporangial conceptacle roof thickness (<8 cells in Chamberlainium vs. >8 cells in Spongites). Two characters also distinguish Pneophyllum from Dawsoniolithon: tetra/bisporangial conceptacle roof thickness (<8 cells in Pneophyllum vs. >8 cells in Dawsoniolithon) and thallus construction (dimerous in Pneophyllum vs. monomerous in Dawsoniolithon).  相似文献   

6.
We describe a new genus and species of the diatom family Stephanodiscaceae with light and scanning electron microscopy from Libo Small Hole, Libo County, Guizhou Province, China. Edtheriotia guizhoiana gen. & sp. nov. has striae across the valve face of varying lengths, and are composed of fine striae towards the margin and onto the mantle. Many round to stellate siliceous nodules cover the exterior of the valve. External fultoportulae opening are short tubes; the opening of the rimportula lacks a tube. Internally a hyaline rim is positioned near the margin. Marginal fultoportulae possess two arcuate opercles. Areolae have domed cribra on the valve face. Those near the margin do not open to the interior. One to three sessile to slightly‐raised rimportulae are placed on the valve face towards the margin; they do not terminate shortened striae towards the center of the valve. This suite of features distinguishes this group from other known genera in the Stephanodicaeae. Cyclotella shanxiensis is transferred to Edtheriotia, making the new combination E. shanxiensis (Xie & Qi) Kociolek et al. comb. nov. It differs from E. guizhoiana by the presence of open pores near the margin of the valve. Features of the new genus are compared and contrasted with others in the Family Stephanodiscaceae. The two species of the genus, unlike most in the family, are known only from rivers and ponds from China and Japan.  相似文献   

7.
8.
Morphological, anatomical, and molecular sequence data were used to assess the establishment and phylogenetic position of the genus Wilsonosiphonia gen. nov. Phylogenies based on rbcL and concatenated rbcL and cox1 loci support recognition of Wilsonosiphonia gen. nov., sister to Herposiphonia. Diagnostic features for Wilsonosiphonia are rhizoids located at distal ends of pericentral cells and taproot‐shaped multicellular tips of rhizoids. Wilsonosiphonia includes three species with diagnostic rbcL and cox1 sequences, Wilsonosiphonia fujiae sp. nov. (the generitype), W. howei comb. nov., and W. indica sp. nov. These three species resemble each other in external morphology, but W. fujiae is distinguished by having two tetrasporangia per segment rather than one, W. indica by having abundant and persistent trichoblasts, and W. howei by having few and deciduous trichoblasts.  相似文献   

9.
10.
The monotypic genus Auxenochlorella with its type species A. protothecoides is so far only known from specific habitats such as the sap of several tree species. Several varieties were described according to physiological performances in culture on different organic substrates. However, two strains designated as Auxenochlorella were isolated from other habitats (an endosymbiont of Hydra viridis and an aquatic strain from an acidic volcano stream). We studied those isolates and compared them with six strains of Auxenochlorella belonging to different varieties. The integrative approach used in this study revealed that all strains showed similar morphology but differed in their SSU and ITS rDNA sequences. The Hydra endosymbiont formed a sister taxon to A. protothecoides, which included the varieties protothecoides, galactophila, and communis. The variety acidicola is not closely related to Auxenochlorella and represented its own lineage within the Trebouxiophyceae. In view of these results, we propose a new species of Auxenochlorella, A. symbiontica, for the Hydra symbiont, and a new genus Pumiliosphaera, with its type species, P. acidophila, for acidophilic strain. These results are supported by several compensatory base changes in the conserved region of ITS‐2 and ITS‐2 DNA barcodes.  相似文献   

11.
12.
Molecular phylogenetic analyses of 18S rDNA (SSU) gene sequences confirm the placement of Crusticorallina gen. nov. in Corallinoideae, the first nongeniculate genus in an otherwise geniculate subfamily. Crusticorallina is distinguished from all other coralline genera by the following suite of morpho‐anatomical characters: (i) sunken, uniporate gametangial and bi/tetrasporangial conceptacles, (ii) cells linked by cell fusions, not secondary pit connections, (iii) an epithallus of 1 or 2 cell layers, (iv) a hypothallus that occupies 50% or more of the total thallus thickness, (v) elongate meristematic cells, and (vi) trichocytes absent. Four species are recognized based on rbcL, psbA and COI‐5P sequences, C. painei sp. nov., the generitype, C. adhaerens sp. nov., C. nootkana sp. nov. and C. muricata comb. nov., previously known as Pseudolithophyllum muricatum. Type material of Lithophyllum muricatum, basionym of C. muricata, in TRH comprises at least two taxa, and therefore we accept the previously designated lectotype specimen in UC that we sequenced to confirm its identity. Crusticorallina species are very difficult to distinguish using morpho‐anatomical and/or habitat characters, although at specific sites, some species may be distinguished by a combination of morpho‐anatomy, habitat and biogeography. The Northeast Pacific now boasts six coralline endemic genera, far more than any other region of the world.  相似文献   

13.
14.
The taxonomy of the Cladophoraceae, a large family of filamentous green algae, has been problematic for a long time due to morphological simplicity, parallel evolution, phenotypic plasticity, and unknown distribution ranges. Partial large subunit (LSU) rDNA sequences were generated for 362 isolates, and the analyses of a concatenated dataset consisting of unique LSU and small subunit (SSU) rDNA sequences of 95 specimens greatly clarified the phylogeny of the Cladophoraceae. The phylogenetic reconstructions showed that the three currently accepted genera Chaetomorpha, Cladophora, and Rhizoclonium are polyphyletic. The backbone of the phylogeny is robust and the relationships of the main lineages were inferred with high support, only the phylogenetic position of both Chaetomorpha melagonium and Cladophora rupestris could not be inferred unambiguously. There have been at least three independent switches between branched and unbranched morphologies within the Cladophoraceae. Freshwater environments have been colonized twice independently, namely by the freshwater Cladophora species as well as by several lineages of the Rhizoclonium riparium clade. In an effort to establish monophyletic genera, the genera Acrocladus and Willeella are resurrected and two new genera are described: Pseudorhizoclonium and Lurbica.  相似文献   

15.
Two marine urostylid ciliates, Caudiholosticha marina sp. nov. and Nothoholosticha flava sp. nov., isolated from intertidal sediment in the Yellow Sea, are investigated using morphological and small subunit rDNA phylogenetic analyses. Caudiholosticha marina is 210?310 μm × 40?55 μm in vivo, and has 10?20 macronuclear nodules, 23?37 midventral cirral pairs extending to 5?8 transverse cirri, and two caudal cirri. It differs from congeners by its marine habitat, larger size, macronuclear arrangement pattern and high number of midventral pairs. Molecular phylogenetic analyses indicate a polyphyly of Caudiholosticha. Nothoholosticha flava is yellow to brownish and 240?320 μm × 40?60 μm sized, and has a bipartite adoral zone, six frontal cirri in atypical bicorona, usually four frontoterminal, one buccal and 5?7 transverse cirri and 28?54 midventral pairs. Phylogenetic analyses allocate N. flava as sister of N. fasciola, type of the genus. The two Nothoholosticha species differ distinctly by the presence/absence of frontoterminal cirri, a feature often used to define genera in the Hypotrichia. However, the SSU rDNA sequence similarity between these two species is 99.3%, which weakens the justification for separating the new isolate at genus level. The taxonomic significance of frontoterminal cirri is discussed based on morphological and molecular data.  相似文献   

16.
Chlamydomonas (Cd.) is one of the largest but most polyphyletic genera of freshwater unicellular green algae. It consists of 400–600 morphological species and requires taxonomic revision. Toward reclassification, each morphologically defined classical subgenus (or subgroup) should be examined using culture strains. Chlamydomonas subg. Amphichloris is characterized by a central nucleus between two axial pyrenoids, however, the phylogenetic structure of this subgenus has yet to be examined using molecular data. Here, we examined 12 strains including six newly isolated strains, morphologically identified as Chlamydomonas subg. Amphichloris, using 18S rRNA gene phylogeny, light microscopy, and mitochondria fluorescent microscopy. Molecular phylogenetic analyses revealed three independent lineages of the subgenus, separated from the type species of Chlamydomonas, Cd. reinhardtii. These three lineages were further distinguished from each other by light and fluorescent microscopy—in particular by the morphology of the papillae, chloroplast surface, stigmata, and mitochondria—and are here assigned to three genera: Dangeardinia emend., Ixipapillifera gen. nov., and Rhysamphichloris gen. nov. Based on the molecular and morphological data, two to three species were recognized in each genus, including one new species, I. pauromitos. In addition, Cd. deasonii, which was previously assigned to subgroup “Pleiochloris,” was included in the genus Ixipapillifera as I. deasonii comb. nov.  相似文献   

17.
Although environmental DNA surveys improve our understanding of biodiversity, interpretation of unidentified lineages is limited by the absence of associated morphological traits and living cultures. Unidentified lineages of marine stramenopiles are called “MAST clades”. Twenty‐five MAST clades have been recognized: MAST‐1 through MAST‐25; seven of these have been subsequently discarded because the sequences representing those clades were found to either (1) be chimeric or (2) affiliate within previously described taxonomic groups. Eighteen MAST clades remain without a cellular identity. Moreover, the discarded “MAST‐13” has been used in different studies to refer to two different environmental sequence clades. After establishing four cultures representing two different species of heterotrophic stramenopiles and then characterizing their morphology and molecular phylogenetic positions, we determined that the two different species represented the two different MAST‐13 clades: (1) a lorica‐bearing Bicosoeca kenaiensis and (2) a microaerophilic flagellate previously named “Cafeteria marsupialis”. Both species were previously described with only light microscopy; no cultures, ultrastructural data or DNA sequences were available from these species prior to this study. The molecular phylogenetic position of three different “C. marsupialis” isolates was not closely related to the type species of Cafeteria; therefore, we established a new genus for these isolates, Cantina gen. nov.  相似文献   

18.
Three novel strains in Calotrichaceae from tropical habitats were isolated and characterized with regard to their morphology, phylogenetic placement, and secondary structures of conserved domains in the 16S-23S internal transcribed spacer (ITS). The strains fell into two clades formerly identified as Calothrix from freshwater and brackish habitats. Based on both morphology and ecology, they differed from the type species of Calothrix, C. confervicola, which is marine, has wide trichomes with short cells, and narrows abruptly to a hyaline hair. The first clade grouped species with heteropolar filaments widened at the base and narrowed gradually toward the apex but not ending in a hair, with basal heterocytes that are formed in series as the apically placed heterocytes senesce; this clade is being named Fulbrightiella gen. nov., with two named species, F. bharadwajae sp. nov. and F. oahuensis sp. nov. The second clade was comprised of a single species with isopolar trichomes that are untapering as hormogonia, but which widen midfilament and taper toward both ends following growth. These trichomes develop pairs of heterocyte mid-filament, causing fragmentation into heteropolar trichomes with basal heterocytes and ends that taper, but not to a hair. This clade consists of a single species at present, Sherwoodiella mauiensis. With this action, four clades in the Calotrichaceae have been named: Macrochaete, Dulcicalothrix, Fulbrightiella, and Sherwoodiella. Calothrix sensu stricto is truly marine, morphologically distinct, and unsequenced; finding and sequencing the generitype for Calothrix remains as the most important and unfinished task in the revision of the Calotrichaceae.  相似文献   

19.
20.
Unexpected contaminants uncovered during routine COI‐5P DNA barcoding of British Columbia Kallymeniaceae indicated the presence of a novel lineage allied to the family Meiodiscaceae, Palmariales. Available rbcL data for species of this family were used to design specific primers to screen for the presence of the meiodiscacean species in 534 kallymeniacean specimens primarily from British Columbia, Canada. Ultimately, 43 positive PCR products representing six diverse genetic groups from nine host species were uncovered; three are described here in the new genus Kallymenicola gen. nov., viz., K. invisiblis sp. nov., K penetrans sp. nov., and K superficialis sp. nov. Although genetic groups loosely displayed evidence of host specificity and cospeciation, examples of host switching with interesting biogeographical patterns were also documented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号