首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analysed 50 movie films of house sparrows (Passer domesticus) foraging on an experimental grid. The location and orientation of each bird was recorded; sex of the individual was determined in about two of every three cases. Results revealed the following: (1) Flock size exhibited a weak inverse relationship to ambient temperature, though aggression was rare in the experimental patch. (2) The frequency of males in foraging groups exceeded the frequency of males in the local population. (3) Within a given flock size, nearest neighbour distances did not differ significantly between male-male and male-female pairs. However, average nearest neighbour distance was inversely related to flock size. (4) Solitaries oriented away from safety and toward a source of disturbance. Orientation of an individual within a larger group was more variable than that of a solitary, and the orientation of nearest neighbours indicated a significant tendency to keep each other in view.  相似文献   

2.
Temporal variation in foraging group structure of a fish assemblage was examined in a flood-prone stream in southern Hokkaido, Japan. Foraging behaviour was observed underwater for four species which inhabit the water column: ayu, Plecoglossus altivelis, white-spotted charr, Salvelinus leucomaenis, masu salmon, Oncorhynchus masou, and Japanese dace, Tribolodon hakonensis, with each species being categorized into five size classes (species-size group; SSG). Based on foraging behaviour, each SSG of the fish assemblage was classified into one of four foraging groups: algae grazers, drift foragers, benthos-drift foragers, and omnivores, defined as SSG exhibiting similar foraging behaviour. All size classes of ayu, and of charr and salmon were categorized as algae grazers and drift foragers, respectively, throughout the study period. In contrast, size classes of dace were categorized as drift foragers, benthos-drift foragers, or omnivores with the same size classes often assigned to different foraging groups from month to month. Digestive tract contents of the fishes in the four foraging groups reflected their observed foraging behaviour, and foraging groups were therefore regarded as representing trophic groups. Abundance and membership of each foraging group varied in accordance with changes in abundance of SSG due to their growth, immigration, emigration, and/or mortality. Moreover, due to numerical dominance within the assemblage, plasticity in foraging behaviour of small- and medium-sized dace also played a key role in determining variability in the foraging group structure. Relative frequencies of two types of foraging behaviour, algae nipping and benthos foraging, of the small-sized dace were significantly correlated with the level of each resource, whereas no significant relationship was detected between foraging frequencies of the medium-sized dace and either resource. Fluctuations in foraging group structure within this assemblage occurred through niche shifts of some component members and by changes in SSG composition.  相似文献   

3.
Habitat structure can impede visibility and movement, resulting in lower resource monopolization and aggression. Consequently, dominant individuals may prefer open habitats to maximize resource gain, or complex habitats to minimize predation risk. We explored the role of dominance on foraging, aggression and habitat choice using convict cichlids (Amatitlania nigrofasciata) in a two‐patch ideal free distribution experiment. Groups of six fish of four distinct sizes first competed for shrimp in one‐patch trials in both an open and complex habitat; half the groups experienced each habitat type first. Following these one‐patch trials, each group then chose between habitat types in a two‐patch trial while competing for food. Finally, each fish underwent an individual behavioural assessment using a battery of “personality” tests to determine if behaviour when alone accurately reflected behaviour within a social context. In the one‐patch trials, dominant fish showed similar food consumption between habitats, but chased more in the complex habitat. In the two‐patch choice trials, dominants preferred and defended the complex habitat, forming an ideal despotic distribution with more than half the fish and competitive weight in the open habitat. Within the groups, individual fish differed in foraging and chasing, with repeatabilities of 0.45 and 0.23 across all treatments. Although a higher foraging rate during the individual assessment predicted foraging rate and use of the complex habitat during the group trials, aggression and boldness tests were not reflective of group behaviour. Across groups, heavier dominants and those with higher foraging rate in the open habitat used the open habitat more, suggesting that both risk and energetic state affect habitat preference in dominant convict cichlids.  相似文献   

4.
The main benefit of the oblong shape of schools of fish is supposed to be the protection against predation. Models of self‐organised travelling groups have shown that this shape may arise as a side effect of the avoidance of collisions with group members. These models were developed for schools of fish in open water, whereas the oblong shape of schools of real fish has mostly been observed in schools in tanks. Therefore, it is not known how school shape in a tank originates neither in models nor in real fish. To find out what causes this shape, we use the combination of a theoretical and an empirical study. We test the predictions produced by our earlier models regarding the effect of school size on the school shape both in a model of self‐organised schooling in a tank and empirically. Empirically, we study the 3D positions of all individuals in the schools of 10–60 real mullets (Chelon labrosus). We calculate for each individual its distance to its nearest neighbour and its velocity and we measure per school its length and width. The relation between school shape and size in the model and in the real mullets supports our prediction and thus supports the hypothesis that school shape may be emergent from the avoidance of collisions during coordinated travelling.  相似文献   

5.
Early behaviour can determine food intake and growth rate with important consequences for life history and survival in fishes. Egg size is known to affect growth rate of young Arctic charr but its influence on the development of behaviour is poorly documented. It is believed that egg size influence on growth and potentially on the behaviour of young fish decreases over time, minimized by the effects of social factors. Shortly after first feeding, we examined differences in mobility and foraging of Arctic charr in relation to egg size and social environment. The behaviour of juveniles from small and large eggs was compared five times over the course of development and in three different experimental settings: long‐term isolation (isolation before hatching), short‐term isolation vs. group rearing and mixed size group vs. homogeneous size groups. Egg size affected foraging behaviour and mobility of fish: fish coming from large eggs were more mobile and foraged more than fish coming from small eggs. Social environment affected foraging behaviour, mobility and space use: fish in a group were more mobile, foraged more and responded faster to food delivery than isolated fish. The interaction of egg size and social effects was seen primarily in foraging activities but did not affect mobility or space use. Large fish in groups foraged more than the three other groups: large fish in isolation, small fish in groups and small fish in isolation. Agonistic behaviour was rarely observed and there was no significant effect of group composition on agonistic behaviour. We discuss the importance of egg size and social effects at early stages of development with a focus on the evolutionary ecology of Arctic charr.  相似文献   

6.
Previous studies have examined the effects of grouping on the locating (search) phase of foraging and feeding behaviour in fishes. Few studies have examined whether schooling in fishes may facilitate individual foraging by enhancing a group's responsiveness to food odours. The purpose of the current study was to assess the effect of increasing group size on the responsiveness of zebrafish, Brachydanio rerio (Hamilton Buchanan), to L-alanine, an amino acid which is an important constituent of prey odours for many fishes. Based on the results of previous studies, either an increasing or decreasing linear relationship or a unimodal (convex or concave) relationship between responsiveness and group size was expected; the results, however, were bimodal. Groups of four fish were most responsive to alanine, as determined by the mean percentage of occurrences of fish in the area of a behavioural arena (an octagonal fluviarium) into which alanine was infused (at 10−3, 10−4, or 10−5 M). Groups of two, six and eight fish were significantly less responsive ( P < 0.05) than either groups of four fish or individual fish. The responses of groups of two, six and eight fish were not significantly different from each other.  相似文献   

7.
Describing the factors that shape collective behaviour is central to our understanding of animal societies. Countless studies have demonstrated an effect of group size in the emergence of collective behaviours, but comparatively few have accounted for the composition/diversity of behavioural phenotypes, which is often conflated with group size. Here, we simultaneously examine the effect of personality composition and group size on nest architecture and collective foraging aggressiveness in the social spider Stegodyphus dumicola. We created colonies of two different sizes (10 or 30 individuals) and four compositions of boldness (all bold, all shy, mixed bold and shy, or average individuals) in the field and then measured their collective behaviour. Larger colonies produced bigger capture webs, while colonies containing a higher proportion of bold individuals responded to and attacked prey more rapidly. The number of attackers during collective foraging was determined jointly by composition and size, although composition had an effect size more than twice that of colony size: our results suggest that colonies of just 10 bold spiders would attack prey with as many attackers as colonies of 110 ‘average’ spiders. Thus, personality composition is a more potent (albeit more cryptic) determinant of collective foraging in these societies.  相似文献   

8.
Foraging effort, swimming activity, vertical position and flight response were recorded in focal juvenile rainbow trout Oncorhynchus mykiss at three group sizes: without company, or in visual and chemical contact with either one or five companion fish at two levels of predation risk: high (simulated aerial predator attack) or low (no attack). The predator attack induced a pronounced flight reaction as well as a reduction in vertical position, feeding and swimming activity. The foraging effort of the focal fish increased with group size independent of the level of predation risk, which suggests that the group-mediated increase in foraging activity is caused by competition rather than by reduction in perceived risk. The flight response to the predator attack, however, was stronger when the focal fish had company, suggesting that individuals may benefit from copying the anti-predator response of other group members.  相似文献   

9.
Social cohesion and prey location in seabirds are largely enabled through visual and olfactory signals, but these behavioural aspects could potentially also be enhanced through acoustic transfer of information. Should this be the case, calling behaviour could be influenced by different social–ecological stimuli. African Penguins Spheniscus demersus were equipped with animal-borne video recorders to determine whether the frequency and types of calls emitted at sea were dependent on behavioural modes (commuting, sedentary and dive bout) and social status (solitary vs. group). For foraging dive bouts we assessed whether the timing and frequency of calls were significantly different in the presence of schooling prey vs. single fish. The probability of call events was significantly more likely for birds commuting early and late in the day (for solitary birds) and during dive bouts (for groups). During foraging dive bouts the frequency of calls was significantly greater for birds diving in the presence of schooling fish and birds called sooner after a catch in these foraging scenarios compared with when only single fish were encountered. Three call types were recorded, 'flat', 'modulated' and 'two-voice' calls, but there was no significant relationship detected with these call types and behavioural modes for solitary birds and birds in groups. The results of this study show that acoustic signalling by African Penguins at sea is used in a variety of behavioural contexts and that increased calling activity in the presence of more profitable prey could be of crucial importance to seabirds that benefit from group foraging.  相似文献   

10.
Acoustic methods were used to study Atlantic redfishes Sebastes spp. vertical migration and shoaling behaviour in Newfoundland waters. Redfishes exhibited consistent patterns of vertical migration in winter, spring and summer, but pelagic shoals were not observed in winter. Pelagic daytime aggregations were generally in close proximity to dense patches of redfishes along the sea floor. Pelagic shoals exhibited high degrees of variability in size, shape and density. Attempts to explain variations in shoal density and area with features of shoal position and structure were unsuccessful. Nearest neighbour distance between fish in shoals had a lower limit near one body length. During the night, fishes were dispersed in the water column and distributions were more homogenous. Diel vertical migration appeared to be a foraging strategy, in which redfishes followed the migration of their euphausiid prey.  相似文献   

11.
Artificial breeding programmes commonly lead to domestication, which is associated with many behavioural differences that can reduce the success of animals released into natural environments. To better understand the factors contributing to domestication, we used a captive population of Chinook salmon (Oncorhynchus tshawytscha) to partition hormonal and behavioural differences to effects of the breeding method and rearing environment. We compared 9‐mo‐old juveniles from three lines that shared a common genetic background: (1) the Channel line produced by natural spawning and reared in a low‐density environment with a natural substrate for approx. 6 mo before being transferred to the hatchery; (2) the Hatchery line produced by artificial spawning; and (3) the Transfer line produced by natural spawning but reared in the hatchery from the eyed‐egg stage. Plasma concentrations of 11‐ketotestosterone (11‐KT) and cortisol were measured in groups of 150 fish and again after 4 d of social interactions in groups of six fish. There was no difference in 11‐KT among lines in large groups, but in small groups, Transfer fish had lower 11‐KT concentrations and were significantly less aggressive than both Channel and Hatchery fish. Regardless of group size, concentrations of the stress hormone cortisol were nearly twofold higher in Channel fish than in Hatchery and Transfer fish. Furthermore, the elevated cortisol concentrations in Channel fish were associated with 35% lower feeding rates than in the other two lines. Our study details complex behavioural and hormonal responses to breeding method and rearing environment in juvenile salmon.  相似文献   

12.
Like mono-species fish groups, formation of mixed-species assemblages is likely driven by trophic influences and interspecific behavioural traits. Our aim was to identify how sympatric estuarine species of differing phenotypes form mixed-species group associations, and to identify changes to group structure of fish that migrate between mono- and mixed-species groups. We used sympatric yellow-eyed mullet (Aldrichetta forsteri), kahawai (Arripis trutta), and Australian snapper (Chrysophrys auratus), representing different phenotypes for the mixed-species group, and yellow-eyed mullet for the mono- and mixed-species comparison. Group formation and structure was quantified in predator and foraging treatment groups. We used previous research in mono-species yellow-eyed mullet to compare behavioural plasticity with the current study. Our novel results suggest similar behavioural traits in mono- and mixed-species fish groups have beneficially co-evolved and importantly, behavioural plasticity is necessary for migration between groups. Overall, our observations highlight key behavioural responses associated with mixed-species fish formations in estuarine ecosystems.  相似文献   

13.
Connors  K. B.  Scruton  D.  Brown  J. A.  McKinley  R. S. 《Hydrobiologia》2002,483(1-3):231-237
The social behaviour of Atlantic salmon smolts was evaluated during their migration period under controlled conditions in an experimental stream tank. Agonistic behaviour, dominance, distance to nearest neighbour, and distance from substrate were examined pre- and post-surgical implantation of dummy radio transmitters (2.4–4.3% body weight). Smolts were able to quickly equilibrate after transmitter insertion. Social ranking changed in nine of the eleven trials with four fish, and in only one of the five trials with pairs. No significant differences were found (p>0.05) in any of the behavioural parameters measured. Overall, the only effect on smolts surgically implanted with radio transmitters was a large shift in dominance. The presence of an antenna also elicited aggressive attacks from other individuals.  相似文献   

14.
A photographic technique is described for determining the three-dimensional position of fish schooling in front of a mirror in a flow tank. School structure is discussed in terms of the distance, horizontal bearing, and elevation of nearest neighbours. Nearest neighbour distances were measured snout-to-snout. A technique of analysis is described which considers the probability distribution of nearest neighbours in space. At speeds of flow 0 to 0·125 metres per second it was possible to show that Phoxinus, a facultative schooler, tended to maintain a school structure as previously reported for obligate schooling species. The structure was present only in a dynamic statistical sense and not in the sense of a rigid crystal lattice. Minnows maintained themselves at approximately 0·9 of their body length from each other under normal conditions and the bearings of neighbour fish suggested an attempt to maintain an optimum packing at this distance. At high speeds of flow the school structure tended to break up as fish sought areas of refuge from the current. All minnow schools were ellipsoidal in shape. The strategic and tactical methods by which schooling fish derive anti-predator advantage are discussed in relation to the school structure.  相似文献   

15.
Studies on fish behavioural and neurophysiological responses to water temperature change may contribute to an improved understanding of the ecological consequences of global warming. We investigated behavioural and neurochemical responses to water temperature in European sea bass (Dicentrarchus labrax) acclimated to three temperatures (18, 22 and 28°C). After 21 d of acclimation, three groups of 25 fish each were exposed to four behavioural challenges (foraging, olfactory, aversive and mirror tests). The expression of choline acetyltransferase (ChAT) was then analysed by Western blotting in CNS homogenates (from a subset of the same fish) as a marker for cholinergic system activity. In both foraging and olfactory tests, fish acclimated to 28°C exhibited significantly higher arousal responses than fish acclimated to lower temperatures. All specimens showed fright behaviour in the aversive test, but the latency of the escape response was significantly less in the fish at 28°C. Finally, the highest mirror responsiveness was exhibited by the fish acclimated to 22°C. As in the case of cholinergic neurotransmission, significantly higher ChAT levels were detected in the telencephalon, diencephalon, cerebellum and spinal cord of fish acclimated to 22 or 28°C in comparison with those maintained at 18°C. Lower ChAT levels were detected in the mesencephalon (optic tectum) at 22 and 28°C than at 18°C. These data indicate that neuronal functions are affected by water temperature. Increases or decreases in ChAT expression can be related to the functional modulation of brain and spinal cord centres involved in behavioural responses to temperature change. Overall, the results of this study suggest that the environmental temperature level influences behaviour and CNS neurochemistry in the European sea bass.  相似文献   

16.
The sensory basis of group cohesion in the weak-electric fish Gnathonemus petersii was investigated in a circular tank with groups of four fish each, interacting through a wide-meshed plastic screen with intact or operated conspecifics, or with other stimulus objects. We confined these stimuli to one or two peripheral holding compartments. The response measures were obtained from the free swimming fish and included (1) the time the fish spent together as a group, (2) the time they spent in front of the holding compartments, (3) the circular distribution of the fish's positions, and (4) the mean nearest neighbour distances. Under empty compartment conditions, four different groups were tested, consisting of either (1) intact, electrically active fish, or (2) electrically ‘silent’ fish (with their electric organ surgically rendered inoperative), or (3) blind, or (4) ‘silent’ and blind animals. The loss of either sensory modality, vision or feedback from electric organ discharge, led to changes of comparable size, decreasing the time spent as a group and increasing the mean nearest neighbour distance. In fish lacking both modalities, group cohesion was further impaired. With stimuli present in one or both holding compartments, the strength of social attraction depended on the nature of the stimulus: the more intact stimulus conspecifics were present, the more densely did the fish group in front of the stimulus compartment. ‘Wired-in’ electric organ discharges (simulating waveform and intensity) and electrically ‘silent’ fish were equally attractive, but only half as attractive as intact fish. Blind free swimming fish aggregated with intact and also with ‘silent’ conspecifics. Under dim light conditions, group cohesion was predominantly, though not exclusively, affected by electrosensory feedback from the electric organ discharge and visual input. Mechanical and olfactory cues may also be involved.  相似文献   

17.
The onset of schooling behaviour and brain growth in larval yellowtail Seriola quinqueradiata larvae fed on Artemia enriched with oleic acid (OA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 10 days was investigated. Larvae from the DHA groups schooled with parallel orientation while those of the EPA groups showed only aggregation. Larvae of the OA groups were dispersed. DHA and EPA groups showed significantly smaller nearest neighbour distance compared with OA groups, and DHA groups showed significantly smaller values of nearest neighbour angle compared with the other groups. The relative volume of the tectum opticus (TO) of the DHA group was significantly larger in two experiments and also the relative volume of the cerebellum (CE) of that group was significantly larger in one experiment. Dietary DHA is probably critically important for the development of the brain, particularly TO, during the larval stages, and that development of TO may be the key factor of the ontogeny of schooling behaviour.  相似文献   

18.
Group living is widespread among animals and has a range of positive effects on individual foraging and predator avoidance. For fishes, capture by humans constitutes a major source of mortality, and the ecological effects of group living could carry‐over to harvest scenarios if fish are more likely to interact with fishing gears when in social groups. Furthermore, individual metabolic rate can affect both foraging requirements and social behaviors, and could, therefore, have an additional influence on which fish are most vulnerable to capture by fishing. Here, we studied whether social environment (i.e., social group size) and metabolic rate exert independent or interactive effects on the vulnerability of wild zebrafish (Danio rerio) to capture by a baited passive trap gear. Using video analysis, we observed the tendency for individual fish to enter a deployed trap when in different shoal sizes. Fish in larger groups were more vulnerable to capture than fish tested individually or at smaller group sizes. Specifically, focal fish in larger groups entered traps sooner, spent more total time within the trap, and were more likely to re‐enter the trap after an escape. Contrary to expectations, there was evidence that fish with a higher SMR took longer to enter traps, possibly due to a reduced tendency to follow groupmates or attraction to conspecifics already within the trap. Overall, however, social influences appeared to largely overwhelm any link between vulnerability and metabolic rate. The results suggest that group behavior, which in a natural predation setting is beneficial for avoiding predators, could be maladaptive under a trap harvest scenario and be an important mediator of which traits are under harvest associated selection.  相似文献   

19.
A general question in biology is how processes at one scale, for example that of individual organisms, influence patterns at larger scales, for example communities of interacting individuals. Here we ask how changing the size‐dependence of the foraging behaviour of individuals can influence the structure of food webs. We assembled communities using a model in which species interactions are determined by allometric foraging rules of (1) handling time and (2) attack rates, and also (3) the distribution of body sizes. We systematically varied these three factors and examined their effects on three community level, food web allometries: the generality ‐ mass correlation, the vulnerability ‐ mass correlation and the trophic height ‐ mass correlation. The results demonstrate how allometries of individual foraging behaviour (handling time and attack rates) are linked across scales of organisation: different community level allometries are influenced by different individual level allometries. For example, generality allometries in the community are most affected by the individual allometric relationships of the attack rate, whereas trophic level allometries in the community are more strongly influenced by variation in individual handling time allometries. Importantly, we also find that the shape of the body size distribution from which species are drawn has a substantial influence on how these links between scales operate. This study suggests that understanding the variation of size structure among ecological networks requires knowledge about the causes of variation in individual foraging behaviour and determinants of the regional body size distribution.  相似文献   

20.
Social and ecological conditions can influence flock formation (e.g. number of flocks, flock size, etc.) depending on the degree of social attraction of a species. We studied group formation in brown‐headed cowbirds (Molothrus ater) over short time periods (30 min) in two semi‐natural experiments conducted under controlled conditions. First, we determined the shape of the relationship between intake rate and flock size by manipulating group size in a single enclosure. Second, we assessed the role of population size, food abundance, and predation risk, and their interactions, in flock size formation in a system of four enclosures (two with and two without food) connected to a central refuge patch. In the first experiment, we found that pecking rates peaked at intermediate flock sizes (three to six individuals), which was influenced by greater availability of foraging time and more aggressive interactions in large groups. In the second experiment, flock sizes in the patches with food increased with population size likely due to the benefits of patch exploitation in groups. Flock size decreased after predator attack probably because refuge availability reduced perceived predation risk more than flocking in larger groups. Food abundance had minor effects, varying flock sizes between the two patches with food, under high food availability conditions when population size was high, probably due to social cohesion effects. Our results suggest that: (1) this species has an inverted‐U food intake–group size relationship with a range of intake‐maximizing flock sizes rather than a single peak, (2) the presence of a near refuge modifies the expected benefits of group patch exploitation under high predation risk, and (3) an increase in population size would more likely be translated into rapid increases in the size of the flocks rather than in more new flocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号