首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. The nuclear apparatus of Homalozoon vermiculare consists of a single moniliform macronucleus and about 25 micronuclei. The number of macronuclear segments depends (i) on the number of divisions of individual segments during the interphase and (ii) on the number of segments that arise prior to cytokinesis from the (temporary) filiform macronucleus. Precytokinetic changes of the macronucleus involve the fusion of individual segments followed by contraction and subsequent elongation of the entire macronucleus. The chromatin bodies uncoil into fine fibrils during macronuclear contraction. At the time when the division furrow appears, the macronucleus starts to renodulate. The interphase segment contains a more or less reticulated chromatin body partly attached to the nuclear envelope and about 30 polymorphous nucleoli. The latter consist of the pars granulosa, the pars fibrosa, and an additional fibrillar component. The nucleoli undergo drastic changes prior to division and the granular component disappears completely during macronuclear condensation. On the average, the macronucleus contains a 3,400-fold amount of DNA compared with a haploid micronucleus, but the intraspecific differences in the DNA content of the entire macronucleus are extremely large. In contrast, DNA content and size of an individual segment of the macronucleus are precisely regulated during interphase.  相似文献   

2.
Ciliates are microbial eukaryotes that separate their nuclear functions into a germline micronucleus and a somatic macronucleus. During development of the macronucleus the genome undergoes a series of reorganization events that includes the precise excision of intervening DNA. Here, we determine the architecture of four loci in the micronuclear and macronuclear genomes of the ciliate Chilodonella uncinata and compare the levels of variation in micronuclear-limited sequences to macronuclear destined sequences at two of these loci. We find that within a population, germline-limited sequences are evolving at the same rate as other putatively neutral sites, but between populations germline-limited sequences are accumulating mutations at a much faster rate than other sites. We also find evidence of macronuclear recombination and incomplete elimination of intervening DNA, which result in increased diversity in the macronuclear genome. Our results support the assertion that the unusual genomic features of ciliates can result in rapid and unpredicted patterns of diversification.  相似文献   

3.
4.
SYNOPSIS. Transection and regeneration of Blepharisma intermedium initiate complex macronuclear activity and micronuclear division. Reversible condensation of the macronucleus is achieved by contraction which involves primary and secondary coiling. Primary coiling, evident in vegetative cells, is enhanced by pronounced constriction of the macronuclear extremities during regeneration. Secondary coiling is restricted to the period of contraction and is initiated at the ends of the mauonucleus. Condensation terminates the coiling processes and gives rise to an amorphous structure. Re-elongation of the macronucleus is not followed immediately by coiling. Micronuclear division begins early in regeneration, but the peak of visible activity is not reached until the 3rd through 5th hours.  相似文献   

5.
We have measured the reassociation kinetics of DNA from the micronucleus and from the macronucleus of the hypotrichous cillate Oxytricha. The micronuclear DNA reassociates with at least a two-component reaction, indicating the presence of both repeated and non-repeated sequences. The kinetic complexity of micronuclear non-repeated DNA is in the range of 2 to 15 × 1011 daltons; the haploid DNA content of the micronucleus is 4 × 1011 daltons (0.66 pg), measured microspectrophotometrically. The DNA of the macronucleus reassociates as a single second-order reaction, with a kinetic complexity of 3.6 × 1010 daltons. A comparison of the kinetic complexities of micronuclear and macronuclear DNAs suggest a 5 to 30 fold reduction in DNA sequence complexity during the formation of a macronucleus from a micronucleus. Macronuclear DNA is in pleces with an average molecular weight of 2.1 × 106 daltons. Since the kinetic complexity of macronuclear DNA is 3.6 × 1010 daltons, the macronucleus must contain about 17,000 different kinds of DNA pieces.Each macronucleus contains 3.5 × 1013 daltons (58 pg) of DNA, indicating that each sequence must be present about 1000 times per macronucleus or 2000 times per cell.  相似文献   

6.
7.
There are over 6000 internally eliminated DNA sequences (IESs) in the Tetrahymena genome that are deleted in a programmed fashion during the development of a polyploid, somatic macronucleus from a diploid germline micronucleus. Recently, based on several results, a homology and small RNA-based mechanism has been proposed for the efficient elimination of IES elements. Since the RNAi machinery is proposed to be intimately involved in silencing potentially harmful repeats such as transposons and viruses, characterization of repeats and the conditions for their developmental elimination from the somatic genome is warranted. Three short (500–600 bp) repeat families, members of which had been experimentally identified in IESs, that is, in micronucleus-specific DNA, are examined here using the Tetrahymena genome database. Members of all three families display varied degrees of truncation and are represented in macronuclear sequences. A 200 bp segment of one of the families can appear in the genome on its own, or as part of a 600 bp repeat detected experimentally, or in association with an unrelated 1 kb sequence to form a 1.2 kb repeat that is also frequently truncated. The 1 kb sequence contains a 300 bp section similar to a repeat associated with a non-long terminal repeat-like element and is often found accompanied by several more copies of this shorter repeat. These observations indicate that transposition may have had a role in the evolution of the short repeat families.  相似文献   

8.
The variation in DNA content of the micronucleus (germinal nucleus) of Stylonychia lemnae and its relation to the number of chromosomes was examined. Different populations possess similar amounts of micronuclear DNA but there are differences of ±30% between clones of the same population. However, the DNA content varies by about 100% in the micronuclei during the lifetime of a clone. The haploid micronucleus contains 35 or 36 chromosomes which persist in the developing macronucleus anlagen and grow to giant chromosomes. Besides this remaining subset, the micronucleus contains a variable number of germ line restricted chromosomes (mean about 140; range between 100 and 180). The somatic macronucleus eliminates these elements early in its development. The varying number of the germ line restricted chromosomes is responsible for the variation in the micronuclear DNA content.  相似文献   

9.
The development of a new somatic nucleus (macronucleus) during sexual reproduction of the ciliate Paramecium aurelia involves reproducible chromosomal rearrangements that affect the entire germline genome. Macronuclear development can be induced experimentally, which makes P. aurelia an attractive model for the study of the mechanism and the regulation of DNA rearrangements. Two major types of rearrangements have been identified: the fragmentation of the germline chromosomes, followed by the formation of the new macronuclear chromosome ends in association with imprecise DNA elimination, and the precise excision of internal eliminated sequences (IESs). All IESs identified so far are short, A/T rich and non-coding elements. They are flanked by a direct repeat of a 5’-TA-3’ dinucleotide, a single copy of which remains at the macronuclear junction after excision. The number of these single-copy sequences has been estimated to be around 60 000 per haploid genome. This review focuses on the current knowledge about the genetic and epigenetic determinants of IES elimination in P. aurelia, the analysis of excision products, and the tightly regulated timing of excision throughout macronuclear development. Several models for the molecular mechanism of IES excision will be discussed in relation to those proposed for DNA elimination in other ciliates.  相似文献   

10.
11.
12.
The ciliated protozoa exhibit nuclear dimorphism. The genome of the somatic macronucleus arises from the germ-line genome of the micronucleus following conjugation. We have studied the fates of highly repetitious sequences in this process. Two cloned, tandemly repeated sequences from the micronucleus of Oxytricha fallax were used as probes in hybridizations to micronuclear and macronuclear DNA. The results of these experiments show: (1) the cloned repeats are members of two apparently unrelated repetitious sequence families, which each appear to comprise a few percent of the micronuclear genome, and (2) the amount of either family in the macronuclei from which our DNA was prepared is about 1/15 that found in an equal number of diploid micronuclei. Most, if not all, of the apparent macronuclear copies of these repeats can be accounted for by micronuclear contamination, which strongly suggests that these sequences are eliminated from the macronuclei and have no vegetiative function.  相似文献   

13.
Ciliates exhibit nuclear dimorphism, i.e. they have a germline micronucleus and a somatic macronucleus. Macronuclei are differentiated from mitotic sisters of micronuclei. The macronuclei of "higher ciliates" are polyploid and divide acentromerically ("amitotically"); they differentiate once per life cycle. By contrast, Karyorelict (KR) ciliate macronuclei are nearly diploid and cannot divide; they must differentiate at every cell cycle. Diverse lines of evidence are presented to support the hypothesis that ancestral ciliate macronuclei were incapable of division (as in living karyorelict ciliates) and that higher ciliates gained, perhaps independently more than once, the ability to divide the macronucleus. Selective pressures that could have driven the evolution and macronuclear division and two plausible step-wise pathways for the evolution of macronuclear division are proposed. These hypotheses are relevant to our understanding of amitosis mechanisms, evolution of nuclear dimorphism, and phylogenetic classification of ciliates.  相似文献   

14.
Ciliates exhibit nuclear dimorphism, i.e. they have a germline micronucleus and a somatic macronucleus. Macronuclei are differentiated from mitotic sisters of micronuclei. The macronuclei of "higher ciliates" are polyploid and divide acentromerically ("amitotically"); they differentiate once per life cycle. By contrast, Karyorelict (KR) ciliate macronuclei are nearly diploid and cannot divide; they must differentiate at every cell cycle. Diverse lines of evidence are presented to support the hypothesis that ancestral ciliate macronuclei were incapable of division (as in living karyorelict ciliates) and that higher ciliates gained, perhaps independently more than once, the ability to divide the macronucleus. Selective pressures that could have driven the evolution and macronuclear division and two plausible step-wise pathways for the evolution of macronuclear division are proposed. These hypotheses are relevant to our understanding of amitosis mechanisms, evolution of nuclear dimorphism, and phylogenetic classification of ciliates.  相似文献   

15.
16.
SYNOPSIS.
Under the growth conditions employed, the G1 macronucleus of Tetrahymena pyriformis HSM contains 7.4 × 10-12 g DNA, the G2 micronucleus 0.42 × 10-12 g. DNA content from the Tetrahymena thermophila macronucleus did not significantly differ from that of HSM, but the micronucleus contained about twice as much DNA as the micronucleus of the HSM cells. The T. thermophila macronucleus contained on average enough DNA for ˜ 35 haploid micronuclear copies. A new spreading technic allowed separation of macronuclear substructures from cells of late G2 to early G1. Photometric determination of DNA content of 345 individual structures suggested the existence of 5 different-sized macronuclear structures with a DNA content corresponding to 2, 4, 8, and 16 × the basic values. Comparison of the DNA content of these structures with (a) mitotic micronuclear chromosomes and (b) meiotic micronuclear chromosomes of T. thermophila cells suggests that the 5 basic values of macronuclear structures derive from structures of micronuclear chromosomes. The micronuclear chromosomes of T. pyriformis may be oligotenic. It is suggested that these results further our understanding of macronuclear organization.  相似文献   

17.
ABSTRACT. To answer whether Blepharisma hyalinum is truly unpigmented, the organism must be established in culture as pointed out by Giese in 1973. Accordingly, the present study deals with B. hyalinum kept in culture since its isolation in 1975. The organism still remains colorless after growth in the dark; however, it contains cortical granules resembling pigment granules in colored species. A comparative study was therefore undertaken of B. hyalinum and B. steini; both species have a compact macronucleus, though of different shape. Crude pigment was extracted with acetone from organisms grown in the dark for three weeks and the maxima were measured by absorption. Purified pigment was obtained from TLC-plate preparations and the absorption maxima were measured after removal of lipids with chloroform. No maxima characteristic of blepharismin were found in extracts of B. hyalinum, but these were present in extracts of B. steini. Electron microscopy of the cortical region revealed membrane-bound granules in both species; these granules differed in content but not in their capacity to extrude. In B. hyalinum all granules had a homogenous electron-dense substructure; in B. steini the granules had a net-like granulated substructure of varying electron density. This difference corresponds to that published on “pigment” granules in albino and pigmented strains of B. undulans. Our conclusions are that B. hyalinum is unpigmented (and a valid separate species) and that the cortical granules may serve other functions than that of storing blepharismin.  相似文献   

18.
Following the sexual phase of its life cycle, the hypotrichous ciliate Oxytricha nova transforms a copy of its chromosomal micronucleus into a macronucleus containing short, linear DNA molecules with an average size of 2.2 kilobase pairs. In addition, more than 90% of the DNA sequences in the micronuclear genome are eliminated during this process. We have examined the organization of macronuclear DNA molecules in the micronuclear chromosomes. Macronuclear DNA molecules were found to be clustered and separated by less than 550 base pairs in two cloned segments of micronuclear DNA. Recombinant clones of two macronuclear DNA molecules that are adjacent in the micronucleus were also isolated and examined by DNA sequencing. The two macronuclear DNA molecules were found to be separated by only 90 base pairs in the micronuclear genome.  相似文献   

19.
ABSTRACT Early research on Paramecium genetics highlighted the role of the cytoplasm on inheritance. Today this tradition continues as recent investigations of macronuclear development in Paramecium have revealed unusual cytoplasmic effects that are not easily explained within current paradigms. It is generally assumed that most programmed DNA rearrangements in ciliates are regulated by cis acting signals encoded within the germline (micronuclear) DNA, but there are increasing examples in which the old macronucleus acts through the cytoplasm (in trans) to affect the loss and rearrangement of DNA in the developing macronucleus. The remarkable specificity of this effect has forced a reevaluation of the standard view of macronuclear determination in Paramecium. This review summarizes our knowledge of the effect of the old macronucleus on the developmentally controlled rearrangements of the P. tetraurelia, stock 51A and B variable surface protein genes.  相似文献   

20.
Paramecium aurelia exconjugants contain new macronuclear anlagen and numerous fragments of the old pre-zygotic macronucleus. Macronuclear anlagen develop during the first two cell cycles after conjugation. During this time their volume increases from about 11 m3 to about 3700 m3 and more than 10 doublings of DNA content occur. The rate of DNA synthesis is between two and three times as great as in the vegetative macronucleus. — In macronuclear fragments, however, DNA synthesis is suppressed. The rate of DNA synthesis in macronuclear fragments during the extended first cell cycle after conjugation (11 1/2 hr. vs. 5 1/2 hr. for the vegetative cell cycle) is only about one-third of the rate in vegetative macronuclei and there is only a 65% increase in the mean DNA content of fragments. The rate of fragment DNA synthesis continues to decrease during each of the subsequent two cell cycles. — Unlike the rate of DNA synthesis, the rate of RNA synthesis per unit of DNA is similar in macronuclear anlagen, macronuclear fragments and fully developed macronuclei. Macronuclear fragments continue to synthesize RNA at the normal rate long after the new macronuclei are fully developed. Fragments contribute about 80% of all RNA synthesized during the first two cell cycles after conjugation. RNA synthesis begins very early in the development of macronuclear anlagen and nucleolar material appears during the first half-hour of anlage development. — Chromosome-like structures were never observed during anlage development and there was no evidence of two periods of DNA synthesis separated by a DNA poor stage as has been observed in several hypotrichous Ciliates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号