首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbivorous insects may benefit from avoiding the smell produced by phytopathogens infecting plant host tissue if the infected tissue reduces insect fitness. However, in many cases the same species of phytopathogen can also infect host plant tissues that do not directly affect herbivore fitness. Thus, insects may benefit from differentiating between pathogen odors emanating from food and nonfood tissues. This is based on the hypothesis that unnecessarily staying attentive to pathogen odor from nonfood tissue may incur opportunity costs associated with not responding to other important survival functions. In this study adults of Drosophila suzukii Matsumura, an invasive larval frugivore, showed reduced attraction to the odor of raspberry fruit, a food tissue, when infected with Botrytis cinerea Pers., a ubiquitous phytopathogen, in favor of odors of uninfected raspberry fruit. Moreover, D. suzukii oviposited fewer eggs on infected raspberry fruit relative to uninfected raspberry fruit. Larval survival and adult size after eclosion were significantly reduced when reared on B. cinerea‐infected raspberry relative to uninfected fruit. Interestingly, when the behavioral choice experiment was repeated using Botrytis‐infected vs. ‐uninfected strawberry leaves, a nonfood tissue, in combination with fresh raspberry fruit, odor from B. cinerea‐infected leaves did not reduce D. suzukii attraction to raspberries relative to raspberries with uninfected leaves. These behavioral results illustrate the important role context can play in odor‐mediated interactions between insects, plants and microbes. We discuss implications of our findings for developing a repellent that can be useful for the management of D. suzukii.  相似文献   

2.
Spotted wing drosophila (SWD) (Drosophila suzukii), a major invasive pest of small fruit crops, was first found in Pennsylvania and Maryland during the 2011 crop season, and since then, it has been established throughout the fruit growing regions of both states. A season‐long field study was conducted to find out the seasonal occurrence of SWD in several fruit crops (e.g. blueberry, tart and sweet cherry, floricane‐fruiting summer red raspberry, blackberry, primocane‐fruiting fall raspberries and table grapes) in Pennsylvania and Maryland in 2014. This is the first study determining seasonal occurrence of SWD using a standard commercial lure (Pherocon® SWD Dual‐Lure?)‐baited traps in this region. In both states, SWD adults were not captured prior to the month of July, and populations of SWD were found to build up in fruit crops only from mid‐July onwards. This indicates early season fruit crops or varieties are not at risk from SWD fruit injury in these two states. Such early fruit crops, for instance strawberry, sweet and tart cherry, are generally harvested before SWD populations build up in this region. In this context, implications of SWD population in various small fruit crops grown in this region and the utility of SWD Dual‐Lure ? in season‐long monitoring of SWD population are discussed.  相似文献   

3.
Insect pest management in wild blueberry (Vaccinium angustifolium Aiton) usually involves insecticidal sprays, which may have detrimental effects on non‐target beneficial insects. Dogbane beetle (Chrysochus auratus Fabricius) (Coleoptera: Chrysomelidae) feeds almost exclusively on spreading dogbane (Apocynum androsaemifolium L.), an increasing weed problem in wild blueberry production. Because C. auratus is an important natural enemy of spreading dogbane, we assessed its susceptibility to several insecticides it may be exposed to during insect pest management. In laboratory bioassays, we found adult dogbane beetles were highly susceptible to field rates of phosmet (Imidan) and acetamiprid (Assail) by direct topical contact and ingestion of treated foliage, whereas no mortality was seen with spirotetramat (Movento) and chlorantraniliprole (Altacor). Topical applications of spinetoram (Delegate) did not cause significant mortality of beetles, but high mortality to beetles was found when they ingested spinetoram‐treated foliage. The results suggest that while some insecticides used in blueberry management will be hazardous to C. auratus, options are available that will cause little harm to this natural enemy.  相似文献   

4.
Bioassays tested insecticidal activity of Erythritol from the nutritive sweetener, Truvia, and an insect growth regulator, Lufenuron, against life stages (eggs, larvae, pupae, adults) of Drosophila melanogaster (Meigen) and Drosophila suzukii (Matsumura), the spotted wing Drosophila (SWD). These compounds were chosen for their demonstrated acute toxicity to adult and larval Drosophila and potential use on organic fruit farms. D. melanogaster fed on standard Drosophila diet media moistened with water containing known concentrations of Erythritol. Likewise, SWD consumed standard diet media as well as thawed host fruit (blackberries and blueberries) treated with solutions of Erythritol, Lufenuron or both. During the first bioassay, Erythritol at lower concentrations between 0 and 500 mm (~61 000 ppm) in water and mixed with instant diet media increased adult survival from ~80% to 97% for D. melanogaster and SWD. However, from aqueous concentrations ranging from 1750 (~414 000 ppm) to 2000 mm (~244 000 ppm), Erythritol killed 100% of adult Drosophila in culture vials. One hundred per cent mortality for SWD and D. melanogaster occurred at ≥0.5 m (~61 000 ppm) Erythritol added to diet media or topically applied to host fruit. In a second bioassay, 0.013–1.000 ppm of aqueous Lufenuron, a chitin synthase inhibitor, when added to dry diet media prevented 90–99% of SWD from reaching the pupal stage. In another assay, ~67% of SWD eggs or neonates (early first instars) died inside blackberries pre‐treated with (dipped in) a soapy solution of 10 ppm Lufenuron. Pre‐treating blackberry fruit with an Erythritol–Lufenuron mixture reduced SWD brood survival by 99%. Likewise, during our last fruit‐based bioassay, 98% of eggs and neonates died inside blueberries similarly pre‐treated. During the last experiment, Lufenuron in diet media also rendered adult females sterile. Sterility, however, dissipated over 7 days once females began feeding on a Lufenuron‐free diet media.  相似文献   

5.
《Journal of Asia》2021,24(3):695-703
Brinjal Fruit and Shoot Borer- Leucinodes orbonalis Guenee is a major insect pest on brinjal- Solanum melongena worldwide. An effective strategy used in developing pest controlling agents is the synergism between insect pheromones and host plant volatiles, which can increase the attraction of insect pest. The present study was aimed at investigating the chemical constituents and attractant effects of the volatiles extracted from different parts of the host plant brinjal on the behavior of adult L. orbonalis. Bioassay using Y-shaped olfactometer revealed that the one-day old virgin female, gravid female and male insects respond positively to the host plant volatiles extracted from fruits, leaves and shoots but not to that of flowers. It was shown that the gravid females were significantly attracted to all three volatiles (p < 0.05). Bioassay using X-shaped olfactometer identified that all three types of insects highly preferred the volatiles from fruits (p < 0.05). Gas chromatography-mass spectrometry analysis of volatiles indicated that brinjal plant produces volatile secondary metabolites, which include 2,2′-(Ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl) dibenzoate (12.11%), 3,7-dimethylocta-1,6-dien-3-ol (22.38%), Benzyl alcohol (22.9%) and Benzyl alcohol (27.06%) as major constituents from fruits, shoots, leaves and flowers respectively. Responses of insects to the volatiles from host plant in the absence of visual cues direct us to focus on the importance of host plant volatiles to locate the plant. Results of this study emphasize the major role that host plant volatiles play in the attraction of insect pests towards the plant.  相似文献   

6.
In Iranian rice fields, different varieties of rice are cultivated which are differentially impacted by females of the rice stem borer, Chilo suppressalis. To elucidate the role odours may play in their host plant finding behaviour, female Ch. suppressalis were exposed to four varieties of rice plants and their volatiles in a four‐arm olfactometer. In whole plant tests, Ch. suppressalis were significantly attracted to the variety previously characterized as most susceptible, least attracted to one characterized as semisusceptible, and showed no attraction to those varieties characterized as semi‐ and highly resistant. Tests using headspace volatile extracts yielded similar results in the case of the most susceptible variety, but showed no attraction to the semisusceptible and highly resistant varieties, and low attraction to the semiresistant variety. Subsequent analysis of the volatile composition identified a panel of 27 components, some of which were either unique to, or abundantly present in, particular varieties, and may explain the observed variation in their attractiveness. Our findings show that rice plant volatiles can play a role in the host selection behaviour of this pest species, and we suggest compounds which may be important to this process and the future application of volatiles in rice pest management programs.  相似文献   

7.
Baits – fermented food products – are generally attractive to many types of insects, which makes it difficult to sort through non‐target insects to monitor a pest species of interest. We test the hypothesis that a chemically simpler and more defined attractant developed for a target insect is more specific and attracts fewer non‐target insects than a chemically more complex food‐type bait. A four‐component chemical lure isolated from a food bait and optimized for the spotted wing drosophila (SWD), Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), was compared to the original wine/vinegar bait to assess the relative responses of non‐target insects. In several field experiments in Washington State, USA, it was shown that numbers of pest muscid flies, cutworm and armyworm moths, and pest yellowjackets were reduced in traps baited with the chemical lure compared to the wine/vinegar bait. In other field experiments in the states of Washington, Oregon, and New York, numbers of non‐target drosophilid flies were also reduced in traps baited with the chemical lure relative to wine/vinegar bait. In Washington, numbers of Drosophila melanogaster Meigen and Drosophila obscura Fallen species groups and Drosophila immigrans Sturtevant were reduced in the chemical lure traps, whereas in New York, D. melanogaster and D. obscura species groups, D. immigrans, Drosophila putrida Sturtevant, Drosophila simulans Sturtevant, Drosophila tripunctata Loew, and Chymomyza spp. numbers were reduced. In Oregon, this same effect was observed with the D. melanogaster species group. Taken together, these results indicate that the four‐component SWD chemical lure will be more selective for SWD compared to fermentation baits, which should reduce time and cost involved in trapping in order to monitor SWD.  相似文献   

8.
Foraging adults of phytophagous insects are attracted by host‐plant volatiles and supposedly repelled by volatiles from non‐host plants. In behavioural control of pest insects, chemicals derived from non‐host plants applied to crops are expected to repel searching adults and thereby reduce egg laying. How experience by searching adults of non‐host volatiles affects their subsequent searching and oviposition behaviour has been rarely tested. In laboratory experiments, we examined the effect of experience of a non‐host‐plant extract on the oviposition behaviour of the diamondback moth (DBM), Plutella xylostella, a specialist herbivore of cruciferous plants. Naive ovipositing DBM females were repelled by an extract of dried leaves of Chrysanthemum morifolium, a non‐host plant of DBM, but experienced females were not repelled. Instead they were attracted by host plants treated with the non‐host‐plant extract and laid a higher proportion of eggs on treated than on untreated host plants. Such behavioural changes induced by experience could lead to host‐plant range expansion in phytophagous insects and play an important role in determining outcome for pest management of some behavioural manipulation methods.  相似文献   

9.
Extensive use of chemical insecticides to control insect pests in agriculture has improved yields and production of high-quality food products. However, chemical insecticides have been shown to be harmful also to beneficial insects and many other organisms like vertebrates. Thus, there is a need to replace those chemical insecticides by other control methods in order to protect the environment. Insect pest pathogens, like bacteria, viruses or fungi, are interesting alternatives for production of microbial-based insecticides to replace the use of chemical products in agriculture. Organic farming, which does not use chemical pesticides for pest control, relies on integrated pest management techniques and in the use of microbial-based insecticides for pest control. Microbial-based insecticides require precise formulation and extensive monitoring of insect pests, since they are highly specific for certain insect pests and in general are more effective for larval young instars. Here, we analyse the possibility of using microbial-based insecticides to replace chemical pesticides in agricultural production.  相似文献   

10.
Households are mini‐ecosystems that provide a variety of conditions in which a variety of insect species can develop. Whether these insects are considered pests, largely depends on the perception, attitudes, and knowledge of the human inhabitants of the house. If considered unacceptable, residents can attempt to manage the insects themselves, or hire a professional. A pest management professional can provide a quick‐fix solution, often relying on the sole use of insecticides, or a sustainable solution through integrated pest management (IPM). In this review, it is discussed how the public's perception, attitudes, and knowledge affect the implementation of IPM in the household through the following steps: inspection, identification, establishment of a threshold level, pest control, and evaluation of effectiveness. Furthermore, recent and novel developments within the fields of inspection, identification, and pest control that allow to address pest infestations more effectively are described and their implementation in the household environment is discussed. In general, pest management in the household environment is reactive instead of pro‐active. The general public lacks the knowledge of the pest insects’ biology to identify the species, perform a proper inspection and identify causes of pest presence, as well as the knowledge of the available tools for monitoring and pest control. The percentage of individuals that seek professional aid in identification and pest control is relatively low. Moreover, the perception of and attitudes towards household insects generally result in low threshold levels. Current developments of methods for monitoring, identification, and control of insect pests in the household environment are promising, such as DNA barcoding, matrix‐assisted laser desorption/ionization time‐of‐flight and RNA interference. Efforts should be strengthened to alter the perception and attitude, and increase the knowledge of the non‐professional stakeholders, so that correct pest management decisions can be taken.  相似文献   

11.
12.
Essential oils of aromatic plants and their individual volatile components have been tested in pest management strategies for their toxic and often repellent effects on target insects. When evaluating their possible effects on crucial behaviours of the pest insects, the olfactory environment including intraspecific communication cues has to be considered. We used the flour beetle Tribolium confusum du Val (Coleoptera: Tenebrionidae), a common stored‐product pest, to investigate the influence of oil of spike lavender, Lavandula spica Medik. (Labiaceae), and its main component, linalool, at various doses on olfactory‐guided behaviour. Using four‐way olfactometers, a dose‐dependent repellent effect of L. spica oil and linalool alone was revealed. On the other hand, we confirmed that T. confusum is attracted by conspecifics, by means of an aggregation pheromone and by 10 ng of one of its components, 1‐tetradecene. Twenty‐four hour pre‐exposure to 10 μl of L. spica oil abolished subsequent attraction to 1‐tetradecene and reduced attraction to five conspecifics. Simultaneous exposure to L. spica oil or linalool and five conspecifics reduced the repellent effect of the volatiles in a dose‐dependent manner, whereas simultaneous exposure to 1‐tetradecene at 10 ng abolished the repellent effect of L. spica oil only at a dose of 0.01 mg. These results indicate a dose‐dependent trade‐off between attractive and plant‐derived repellent volatiles, which may influence the effectiveness of such volatiles in their potential use in alternative pest management strategies.  相似文献   

13.
Entomopathogenic fungi have a great potential in biological control of insect pest population. Fungal pathogens are promising source of insecticides and notable alterative to chemical pesticides. These fungi possess a unique mechanism of insects paralysis. As natural enemies of insects they attack direct host cuticle via a combination of mechanical pressure and cuticle-degrading enzymes. Entomopathogenic fungi produce several proteo-, chitino- and lipolytic enzymes, which are accepted as key factors in insect mycosis. The role of extracellular enzymes in pathogenesis is still not well understood. Profound understanding the mechanisms of insect paralysis by entomopathogenic fungi will help in the production of safer for environment and more efficiency mycoinsecticides.  相似文献   

14.
The factors explaining host‐associated differentiation (HAD) have not yet been fully characterized, especially in agricultural systems. It is thought that certain characteristics within a system may increase the probability for HAD to occur. These characteristics include relatively long‐standing evolutionary relationships between insects and their host plants, endophagy, and allochrony in host‐plant phenologies. We assessed the status of these characteristics as well as the presence of HAD in the cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae), a pest associated with blueberry and cranberry in eastern North America. We reveal the occurrence of two distinct populations of A. vaccinii that are allochronically isolated by the phenological stage of their respective host plants (cranberries or blueberries). Laboratory‐reared A. vaccinii adults collected from blueberries emerge at least 1 week earlier than adults from cranberries and the antennal sensitivity of adults to host‐plant volatiles differs between A. vaccinii collected from blueberry and cranberry. Despite finding characteristics indicative of HAD, we did not detect a genetic signature of HAD in A. vaccinii. These findings suggest that HAD may occur through behavioral and phenological mechanisms before there is sufficient genetic variation to be detected.  相似文献   

15.
A common method of adult mosquito control consists of residual application on surfaces and aerial spraying often using pyrethroids. However, not all insects that contact insecticides are killed. Sublethal exposure to neurotoxic compounds can negatively affect sensory organs and reduce efficiency of host location. Flight tracks of host-seeking female Culex quinquefasciatus, Anopheles albimanus, and Aedes aegypti in a wind tunnel were video-recorded to compare activation of host-seeking and patterns of flight orientation to host odors. During host-seeking flights, all three mosquito species differed significantly in flight duration, velocity, turn angle, and angular velocity. Mosquitoes were then exposed to sublethal levels (LD(25) ) of pyrethroid insecticides to evaluate the effects of the neurotoxicants 24 hours post-exposure. Significant reductions in time of activation to flight and flight direction were observed in mosquitoes exposed to deltamethrin and permethrin. Additionally, pesticide-treated Cx. quinquefasciatus mosquitoes flew significantly slower, spent more time in flight, and turned more frequently than untreated controls.  相似文献   

16.
Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the primary vector of Candidatus Liberibacter spp. bacteria that cause citrus greening, a disease of worldwide importance. Olfactometry was employed to test responses of D. citri to odours from intact citrus plants (Mexican lime, Citrus aurantifolia, sour orange, Citrus aurantium, Marsh grapefruit, Citrus paradisi and Valencia orange, Citrus sinensis), citrus plants previously infested with D. citri, and odours of conspecifics including nymphs, adult insects of same and opposite sex, and their products (honeydew), both alone and in combination. In contrast to other studies, psyllids of both sexes were attracted to volatiles of undamaged Mexican lime leaves, whereas undamaged grapefruit attracted only females, and leaves of Valencia and sour orange did not attract either sex. All four plant species attracted female psyllids when previously infested, but only Mexican lime and sour orange‐attracted males. Thus, Citrus species appear to vary in the production of both constituitive and induced volatiles that attract adult psyllids. Volatiles emitted by nymphs did not attract either sex, but psyllid honeydew was attractive to males, likely due to female pheromone residues. Males oriented to the odour of females, whereas the reverse was not true, and neither males nor females oriented to same‐sex volatiles. The addition of conspecific cues (adults, nymphs or honeydew) did not increase female attraction to previously infested leaves, but male response was increased by the presence of adults and honeydew, regardless of plant species. Thus, female psyllids appear to orient more strongly to volatiles of plant origin, whereas males respond more strongly to cues emanating from females and conspecific excretions. These results suggest that female psyllids drive the initial colonization of host plants, whereas males orient to females and infested plants. Identification of the specific volatiles involved may permit their use in monitoring and management of this pest.  相似文献   

17.
The role of symbiotic microbes in insects, especially the beneficial character of this interaction for insects, has received much attention in recent years as it has been related to important aspects of the host insects' biology such as development, reproduction, survival, and fitness. Among insect hosts, tephritid fruit flies are well known to form beneficial associations with their symbionts. To control these destructive agricultural pests, environmentally friendly approaches, like the sterile insect technique as a component of integrated pest management strategies, remain most effective. In this study, changes in the bacterial profile of mass‐reared oriental fruit flies, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), were examined in both larval and adult stages and also after irradiation by employing a 16S rRNA gene‐based Illumina sequencing approach. Proteobacteria was the prevalent bacterial phylum in non‐irradiated adults and larvae. Alphaproteobacteria was the most abundant class in larvae but almost absent in adults, which was dominated by Gammaproteobacteria. Firmicutes were present in both developmental stages but at lower relative abundance. At genus level, Acetobacter prevailed in the larval stage and members of the Enterobacteriaceae family in adults. Irradiated samples exhibited higher diversity and richness indices compared to the non‐irradiated oriental fruit flies, whereas no significant changes were observed between the two developmental stages of the non‐irradiated samples. Lactobacillus, members of the Orbacecae family, and Morganella were detected but to a lesser degree upon irradiation, whereas the relative abundance of Lactococcus and Orbus increased. The bacterial profile of larvae appeared to be different compared to that of adult B. dorsalis flies. The subsequent application of irradiation at the pupal stage led to the development of different microbiota between treated and untreated samples, affecting diversity and operational taxonomic unit composition. Irradiated samples of oriental fruit flies were characterized by higher species diversity and richness.  相似文献   

18.
Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect–host interactions, but also for the development of sustainable pest‐control strategies that exploit insects' host‐seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host‐seeking have focussed on short‐range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of ‘habitat cues’, volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil‐dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non‐host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant‐derived repellents for controlling insect pests.  相似文献   

19.
研究了下列害虫和寄生天敌种类对大豆植株中提取的某些挥发性次生化合物及其不同组合混合相的触角电位反应: 1)豆蚜Aphis craccivora Koch和麦长管蚜Macrosiphum avenae (Fabricius);2)为害大豆植株的大豆蚜Aphis glycines Matsumura和不为害大豆植株的豆蚜二者所共有的寄生天敌豆柄瘤蚜茧蜂Lysiphlebus fabarum Marshall; 3)不为害大豆植株的麦长管蚜的寄生天敌燕麦蚜茧蜂Aphidius picipes Nees。结果表明,与大豆植株相关联的大豆蚜和不相关联的豆蚜所共有的天敌——豆柄瘤蚜茧蜂,对大豆植株的挥发性次生化合物及其混合相反应敏感,而与大豆植株不相关联的豆蚜、麦长管蚜及其寄生天敌——燕麦蚜茧蜂,对大豆植株的挥发性次生化合物及其混合相反应不敏感。再次证明,植物挥发性次生化合物在害虫及其寄生天敌搜寻寄主的过程中起到重要的作用。  相似文献   

20.
Many insect pests utilize plant volatiles for host location and untangling the mechanisms of this process can provide tools for pest management. Numerous experimental results have been published on the effect of plant volatiles on insect pests. We used a meta‐analysis to summarize this knowledge and to look for patterns. Our goal was to identify herbivore and plant traits that might explain the herbivores’ behavioral response to plant volatiles in field applications. We scored a total of 374 unique plant volatile‐insect herbivore interactions obtained from 34 published studies investigating 50 herbivore pest species. Attractants had a significant effect on insect herbivore abundance but repellents did not; this latter result could be a result of the comparatively small number of field studies that tested plant volatiles as repellents (3%). Females were significantly more attracted to plant volatile baits than males. The diet breadth of herbivores was independent of a behavioral response to plant volatiles, but more case studies show effects of volatiles on chewers, followed by wood‐borers and sap‐feeders. There are more demonstrations of attraction to plant volatiles in Lepidoptera than in Thysanoptera. The method of plant volatile application had a significant effect on herbivore abundance and increasing the number of chemicals in individual baits attracted more herbivores. The magnitude of the response of herbivores to plant volatiles in forest and agricultural habitats was similar. We explore consistent patterns and highlight areas needing research in using plant volatiles to manage insect pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号