首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Although the impact of elevated carbon dioxide and rising temperature on plants and animals has been extensively documented recently, only limited understanding exists regarding their combined effects. The objective of this research was to address the consequences of using combinations of elevated CO2 and elevated temperature on a plant's defensive chemistry, and subsequent utilization of the plant as insect food. Our results indicated that elevated CO2 and increased temperature, for the most part, act independently on the production of defensive compounds in broccoli leaves (Brassica oleracea L. var. italica). CO2 concentrations had significant effects on the foliar water content, total phenolic compounds, polyphenol oxidase and trypsin inhibitor concentrations. The herbivore Spodoptera litura (Fabricius; Lepidoptera: Noctuidae) responded to changes in the plant secondary chemistry, with larvae consuming more plant materials that had been exposed to elevated CO2. The food utilization efficiencies of second‐instar larvae were more sensitive to CO2‐treated foliage than those of the third‐ and fourth‐instar larvae. Temperature did exert a significant effect on food utilization (ECD) by the larvae. Our study will provide important information in future predictions on plant–insect interactions as a result of climate change. The study also demonstrated that since various larval stages might respond differently to climate change, this possibility needs to be considered in future forecasting and monitoring.  相似文献   

2.
Springs emitting carbon dioxide are frequent in Central Italy and provide a way of testing the response of plants to CO2 enrichment under natural conditions. Results of a CO2 enrichment experiment on soybean at a CO2 spring (Solfatara) are presented. The experimental site is characterized by significant anomalies in atmospheric CO2 concentration produced by a large number of vents emitting almost pure CO2 (93%) plus small amounts of hydrogen sulphide, methane, nitrogen and oxygen. Within the gas vent area, plants were grown at three sub-areas whose mean CO2 concentrations during daytime were 350,652 and 2370 μmol mol-1, respectively. Weekly harvests were made to measure biomass growth, leaf area and ontogenetic development. Biomass growth rate and seed yield were enhanced by elevated CO2. In particular, onto-morphogenetic development was affected by elevated CO2 with high levels of CO2 increasing the total number of main stem leaf nodes and the area of the main stem trifoliolate leaves. Biochemical analysis of plant tissue suggested that there was no effect of the small amounts of H2S on the response to CO2 enrichment. Non-protein sulphydryl compounds did not accumulate in leaf tissues and the overall capacity of leaf extracts to oxidize exogenously added NADH was not decreased. The limitations and advantages of experimenting with crop plants at elevated CO2 in the open and in the proximity of carbon dioxide springs are discussed.  相似文献   

3.
To investigate if Eucalyptus species have responded to industrial-age climate change, and how they may respond to a future climate, we measured growth and physiology of fast- ( E. saligna ) and slow-growing ( E. sideroxylon ) seedlings exposed to preindustrial (290), current (400) or projected (650 μL L−1) CO2 concentration ([CO2]) and to current or projected (current +4 °C) temperature. To evaluate maximum potential treatment responses, plants were grown with nonlimiting soil moisture. We found that: (1) E. sideroxylon responded more strongly to elevated [CO2] than to elevated temperature, while E. saligna responded similarly to elevated [CO2] and elevated temperature; (2) the transition from preindustrial to current [CO2] did not enhance eucalypt plant growth under ambient temperature, despite enhancing photosynthesis; (3) the transition from current to future [CO2] stimulated both photosynthesis and growth of eucalypts, independent of temperature; and (4) warming enhanced eucalypt growth, independent of future [CO2], despite not affecting photosynthesis. These results suggest large potential carbon sequestration by eucalypts in a future world, and highlight the need to evaluate how future water availability may affect such responses.  相似文献   

4.
Recent breakthroughs in CO(2) fumigation methods using free-air CO(2) enrichment (FACE) technology have prompted comparisons between FACE experiments and enclosure studies with respect to quantification of the effects of projected atmospheric CO(2) concentrations on crop yields. On the basis of one such comparison, it was argued that model projections of future food supply (some of which are based on older enclosure data) may have significantly overestimated the positive effect of elevated CO(2) concentration on crop yields and, by extension, food security. However, in the comparison, no effort was made to differentiate enclosure study methodologies with respect to maintaining projected CO(2) concentration or to consider other climatic changes (e.g. warming) that could impact crop yields. In this review, we demonstrate that relative yield stimulations in response to future CO(2) concentrations obtained using a number of enclosure methodologies are quantitatively consistent with FACE results for three crops of global importance: rice (Oryza sativa), soybean (Glycine max) and wheat (Triticum aestivum). We suggest, that instead of focusing on methodological disparities per se, improved projections of future food supply could be achieved by better characterization of the biotic/abiotic uncertainties associated with projected changes in CO(2) and climate and incorporation of these uncertainties into current crop models.  相似文献   

5.
  总被引:1,自引:0,他引:1  
Elevated atmospheric CO2 concentrations ([CO2]) are expected to increase C3 crop yield through the CO2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process‐based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free‐Air CO2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above‐ground biomass production at elevated [CO2] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO2]. This study provides a link between localized experiments and regional‐scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO2] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO2] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops.  相似文献   

6.
朱敏  孟玲  李保平 《生态学报》2015,35(2):333-339
"补偿取食"假说认为CO2浓度升高后植食性昆虫会增大取食量以弥补植物组织中氮素营养的不足。但实证研究并非都支持该假说。用人工智能气候箱设置CO2浓度(390μL/L和780μL/L)和固氮菌(有、无)等2因素4处理,种植菜豆饲喂刚蜕皮进入4龄的斜纹夜蛾幼虫,测定其取食和食物利用效率。协方差分析结果表明,CO2浓度与固氮菌互作对斜纹夜蛾幼虫取食量具有显著影响,在无固氮菌处理下,斜纹夜蛾幼虫对高CO2浓度处理的菜豆取食量明显高于当前CO2浓度处理的;而在有固氮菌处理下,斜纹夜蛾幼虫对高CO2浓度下菜豆的取食量又比当前CO2浓度处理下的低。固氮菌对斜夜蛾4龄幼虫最终体重没有显著影响,但高CO2浓度处理的4龄幼虫终体重大于当前CO2浓度处理的幼虫。CO2浓度、固氮菌及其互作对斜纹夜蛾幼虫的相对取食率(RCR)和相对生长率(RGR)具有显著影响,在当前CO2浓度处理下,斜纹夜蛾4龄幼虫的RCR和RGR在有、无固氮菌处理之间没有显著差异;但在升高CO2浓度下,无固氮菌处理下的RCR和RGR显著大于有固氮菌处理。CO2浓度及其与固氮菌互作显著影响近似消化率(AD),在无固氮菌处理下,CO2浓度升高使AD增大;但在有固氮菌、CO2浓度升高下,其AD略有降低。CO2浓度和固氮菌双因素处理对消化食物转化率(ECD)无显著影响。研究结果支持"补偿取食"假说。  相似文献   

7.
Carob seedlings ( Ceratonia siliqua L. cv. Mulata), fed with nitrate or ammonium, were grown in growth chambers containing two levels of CO2 (360 or 800 μl l−1), three root temperatures (15, 20 or 25°C), and the same shoot temperature (20/24°C, night/day temperature). The response of the plants to CO2 enrichment was affected by environmental factors such as the type of inorganic nitrogen in the medium and root temperature. Increasing root temperature enhanced photosynthesis rate more in the presence of nitrate than in the presence of ammonium. Differences in photosynthetic products were also observed between nitrate- and ammonium-fed carob seedlings. Nitrate-grown plants showed an enhanced content of sucrose, while ammonium led to enhanced storage of starch. Increase in root temperature caused an increase in dry mass of the plants of similar proportions in both nitrogen sources. The enhancement of the rates of photosynthesis by CO2 enrichment was proportionally much larger than the resulting increases in dry mass production when nitrate was the nitrogen source. Ammonium was the preferred nitrogen source for carob at both ambient and high CO2 concentrations. The level of photosynthesis of a plant is limited not only by atmospheric CO2 concentration but also by the nutritional and environmental conditions of the root.  相似文献   

8.
9.
Using controlled environmental growth chambers, whole plants of soybean, cv. ‘Clark’, were examined during early development (7–20 days after sowing) at both ambient (≈ 350 μL L–1) and elevated (≈ 700 μL L–1) carbon dioxide and a range of air temperatures (20, 25, 30, and 35 °C) to determine if future climatic change (temperature or CO2 concentration) could alter the ratio of carbon lost by dark respiration to that gained via photosynthesis. Although whole-plant respiration increased with short-term increases in the measurement temperature, respiration acclimated to increasing growth temperature. Respiration, on a dry weight basis, was either unchanged or lower for the elevated CO2 grown plants, relative to ambient CO2 concentration, over the range of growth temperatures. Levels of both starch and sucrose increased with elevated CO2 concentration, but no interaction between CO2 and growth temperature was observed. Relative growth rate increased with elevated CO2 concentration up to a growth temperature of 35 °C. The ratio of respiration to photosynthesis rate over a 24-h period during early development was not altered over the growth temperatures (20–35 °C) and was consistently less at the elevated relative to the ambient CO2 concentration. The current experiment does not support the proposition that global increases in carbon dioxide and temperature will increase the ratio of respiration to photosynthesis; rather, the data suggest that some plant species may continue to act as a sink for carbon even if carbon dioxide and temperature increase simultaneously.  相似文献   

10.
    
In autumn, agricultural perennial weeds prepare for winter and can store reserves into creeping roots or rhizomes. Little is known about influence of climate change in this period. We tested the effect of simulated climate change in autumn on three widespread and noxious perennial weeds, Elymus repens (L.) Gould, Cirsium arvense (L.) Scop. and Sonchus arvensis L. We divided and combined simulated climate change components into elevated CO2 concentration (525 ppm), elevated temperatures (+2–2.5°C), treatments in open‐top chambers. In addition, a control in the open‐top chamber without any increase in CO2 and temperature, and a field control outside the chambers were included. Two geographically different origins and three pre‐growth periods prior to the exposure to climate change factors were included for each species. All species increased leaf area under elevated temperature, close to doubling in E. repens and quadrupling in the dicot species. E. repens kept leaves green later in autumn. C. arvense did not benefit in below‐ground growth from more leaf area or leaf dry mass. S. arvensis had low levels of leaf area throughout the experiment and withered earlier than the two other species. Below‐ground plant parts of S. arvensis were significantly increased by elevated temperature. Except for root:shoot ratio of C. arvense, the effects of pure elevated CO2 were not significant for any variables compared to the open‐top chamber control. There was an additive, but no synergistic, effect of enhanced temperature and CO2. The length of pre‐growth period was highly important for autumn plant growth, while origin had minor effect. We conclude that the small transfer of enhanced above‐ground growth into below‐ground growth under climate change in autumn does not favour creeping perennial plants per se, but more leaf area may offer more plant biomass to be tackled by chemical or physical weed control.  相似文献   

11.
A temperature gradient chamber (TGC) is described which enables elevated CO2 concentrations and a dynamic temperature gradient to be imposed on field crops throughout their life cycle under standard husbandry. Air is circulated through two double-walled polyethylene-covered tunnels connected to a split heat pump system to give a near-linear temperature gradient along each tunnel. Solar energy gain along each tunnel and exchange with outer tunnel air flow contribute to the temperature gradient and also produce diurnal and seasonal temperature fluctuations corresponding to ambient conditions. Mean temperature gradients of between 3 and 5°C have been recorded throughout the growing seasons of crops of lettuce, carrot, cauliflower and winter wheat. Elevated or present CO2 concentrations are maintained in each of two pairs of tunnels throughout the cropping season using pure CO2 injected through motorized needle valves. This system can realistically simulate aspects of the effects of projected future environmental change on crop growth, development and yield, and in particular tin-possible interaction of the effects of increased CO2 and temperature.  相似文献   

12.
大气一氧化碳浓度升高对植物生长的影响   总被引:18,自引:2,他引:18  
大气CO2浓度同对植物生长有促进作用,对C3植物生长的促进作用最大。短期CO2浓度升高时,植物光和速率增加;在长期CO2浓度升高条件下,植物光鸽上降并发生光合适应现象。这可能是植物在长期CO2浓度升高条件下植物源库关系不平衡引起的反馈抑制作用以及营养吸收不能满足光合速率增加的需要所引起Rubiseo活必和含量下降。在CO2浓度升高条件下植物的呼吸也会发生变化,根的分枝和数量增多,根系的分泌量和吸收  相似文献   

13.
In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]‐only treatment than to those in the warming‐only treatment. In contrast to warming‐only experiments, both the combined and the [ CO2 ]‐only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]‐only treatment, possibly due to the warming‐induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less‐than‐additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long‐term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our results also suggest that projected responses to future global warming in Earth System models should not be parameterized using single factor warming experiments.  相似文献   

14.
    
Helicoverpa armigera (Hübner), Earias vittella (Fabricius), Spodoptera litura (Fabricius), Spodoptera exigua (Hübner) (all Lepidoptera: Noctuidae), Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), and Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) are the major pests of cotton and maize. Mass‐rearing of these insects under controlled conditions is necessary to obtain the numbers needed to conduct bioassays to screen insecticides, proteins, and other compounds, as tools for insect pest management. We present a diet suitable for rearing the six lepidopteran pests (five cotton and one maize pest). We further show that this diet is on par with or superior to the published diet recipes for each of the insect species, which were studied for three generations. We also discuss the advantages of antimicrobials other than formalin for keeping microbial growth under check. A combination of antimicrobial solution and benomyl provided effective control and suppressed the growth of microbes for a longer period than a formalin‐containing diet. A common diet for six pests provide opportunities for automation of diet preparation in addition to improved throughput and consistency in the process, while eliminating diet‐batch related errors.  相似文献   

15.
Predicted responses of transpiration to elevated atmospheric CO2 concentration (eCO2) are highly variable amongst process‐based models. To better understand and constrain this variability amongst models, we conducted an intercomparison of 11 ecosystem models applied to data from two forest free‐air CO2 enrichment (FACE) experiments at Duke University and Oak Ridge National Laboratory. We analysed model structures to identify the key underlying assumptions causing differences in model predictions of transpiration and canopy water use efficiency. We then compared the models against data to identify model assumptions that are incorrect or are large sources of uncertainty. We found that model‐to‐model and model‐to‐observations differences resulted from four key sets of assumptions, namely (i) the nature of the stomatal response to elevated CO2 (coupling between photosynthesis and stomata was supported by the data); (ii) the roles of the leaf and atmospheric boundary layer (models which assumed multiple conductance terms in series predicted more decoupled fluxes than observed at the broadleaf site); (iii) the treatment of canopy interception (large intermodel variability, 2–15%); and (iv) the impact of soil moisture stress (process uncertainty in how models limit carbon and water fluxes during moisture stress). Overall, model predictions of the CO2 effect on WUE were reasonable (intermodel μ = approximately 28% ± 10%) compared to the observations (μ = approximately 30% ± 13%) at the well‐coupled coniferous site (Duke), but poor (intermodel μ = approximately 24% ± 6%; observations μ = approximately 38% ± 7%) at the broadleaf site (Oak Ridge). The study yields a framework for analysing and interpreting model predictions of transpiration responses to eCO2, and highlights key improvements to these types of models.  相似文献   

16.
郭林芳  李保平 《昆虫学报》2008,51(10):1017-1021
为研究甜菜夜蛾Spodoptera exigua幼虫被斑痣悬茧蜂Meteorus pulchricornis寄生后的取食以及食物利用情况,在室内采用重量法测定了甜菜夜蛾4龄幼虫被寄生后取食量、体重增加量、营养指标的变化。结果表明:被寄生甜菜夜蛾幼虫的取食量、生长率和食物利用效率等明显受到抑制,幼虫被寄生后第3-6 d 取食量显著小于未被寄生幼虫,寄生后第4 d 的幼虫取食量只有正常幼虫的29.89%,第5 d只有48.69%。幼虫在寄生后的第3-5 d体重增加量显著小于未被寄生幼虫,分别为正常幼虫的21.51%,38.87%和14.42%,相对生长率则也显著低于后者。被寄生甜菜夜蛾幼虫的营养利用表现也明显不同于未被寄生幼虫,反映生长和代谢效率的食物利用率(ECI)和食物转化率(ECD)均显著降低,而反映吸收效率的近似消化率(AD)则提高。虽然在寄生后第4 d出现了相反的现象,其原因可能在于第4 d取食量明显减少,而体重仍在增加。本研究表明,斑痣悬茧蜂寄生明显抑制寄主甜菜夜蛾幼虫的取食、食物利用效率和生长。  相似文献   

17.
We investigated the effect of elevated [CO2] (700 μmol mol?1), elevated temperature (+2 °C above ambient) and decreased soil water availability on net photosynthesis (Anet) and water relations of one‐year old potted loblolly pine (Pinus taeda L.) seedlings grown in treatment chambers with high fertility at three sites along a north‐south transect covering a large portion of the species native range. At each location (Blairsville, Athens and Tifton, GA) we constructed four treatment chambers and randomly assigned each chamber one of four treatments: ambient [CO2] and ambient temperature, elevated [CO2] and ambient temperature, ambient [CO2] and elevated temperature, or elevated [CO2] and elevated temperature. Within each chamber half of the seedlings were well watered and half received much less water (1/4 that of the well watered). Measurements of net photosynthesis (Anet), stomatal conductance (gs), leaf water potential and leaf fluorescence were made in June and September, 2008. We observed a significant increase in Anet in response to elevated [CO2] regardless of site or temperature treatment in June and September. An increase in air temperature of over 2 °C had no significant effect on Anet at any of the sites in June or September despite over a 6 °C difference in mean annual temperature between the sites. Decreased water availability significantly reduced Anet in all treatments at each site in June. The effects of elevated [CO2] and temperature on gs followed a similar trend. The temperature, [CO2] and water treatments did not significantly affect leaf water potential or chlorophyll fluorescence. Our findings suggest that predicted increases in [CO2] will significantly increase Anet, while predicted increases in air temperature will have little effect on Anet across the native range of loblolly pine. Potential decreases in precipitation will likely cause a significant reduction in Anet, though this may be mitigated by increased [CO2].  相似文献   

18.
Stomata help plants regulate CO2 absorption and water vapor release in response to various environmental changes, and plants decrease their stomatal apertures and enhance their water status under elevated CO2. Although the bottom‐up effect of elevated CO2 on insect performance has been extensively studied, few reports have considered how insect fitness is altered by elevated CO2‐induced changes in host plant water status. We tested the hypothesis that aphids induce stomatal closure and increase host water potential, which facilitates their passive feeding, and that this induction can be enhanced by elevated CO2. Our results showed that aphid infestation triggered the abscisic acid (ABA) signaling pathway to decrease the stomatal apertures of Medicago truncatula, which consequently decreased leaf transpiration and helped maintain leaf water potential. These effects increased xylem‐feeding time and decreased hemolymph osmolarity, which thereby enhanced phloem‐feeding time and increased aphid abundance. Furthermore, elevated CO2 up‐regulated an ABA‐independent enzyme, carbonic anhydrase, which led to further decrease in stomatal aperture for aphid‐infested plants. Thus, the effects of elevated CO2 and aphid infestation on stomatal closure synergistically improved the water status of the host plant. The results indicate that aphid infestation enhances aphid feeding under ambient CO2 and that this enhancement is increased under elevated CO2.  相似文献   

19.
Clonal plants of white clover (Trifolium repens L.), grown singly in pots of Perlite and solely dependent for nitrogen on root nodule N2 fixation, were maintained in controlled environments which provided four environments: 18/13 °C day/night temperature at 340 and 680 μmol mol?1 CO2 and 20·5/15·5°C day/night temperature at 340 and 680 μmol mol?1 CO2. The daylength was 12 h and the photon flux density 500±25 μmol m?2 s?1 (PFD). All plants were defoliated for about 80d, nominally every alternate day, to leave the youngest expanded leaf intact on 50% of stolons, plus expanding leaves (simulated grazing). Elevated CO2 increased the yield of biomass removed at defoliation by a constant 45% during the second 40d of the experiment and by a varying amount in the first half of the experiment. Elevated temperature had little effect on biomass yield. Nitrogen, as a proportion of the harvested biomass, was only fractionally affected by elevated CO2 or temperature. In contrast, N2 fixation increased in concert with the promoting effect of elevated CO2 on biomass production. The increased yield of biomass harvested in 680 μmol mol?1 CO2 was primarily due to the early development and continued maintenance of more stolons. However, the stolons of plants grown in elevated CO2 also developed leaves which were heavier and slightly larger in area than their counterparts in ambient CO2. The conclusion is that, when white clover plants are maintained at constant mass by simulated grazing, they continue to respond to elevated CO2 in terms of a sustained increase in biomass production.  相似文献   

20.
While previous studies have examined the growth and yield response of rice to continued increases in CO2 concentration and potential increases in air temperature, little work has focused on the long-term response of tropical paddy rice (i.e. the bulk of world rice production) in situ, or genotypic differences among cultivars in response to increasing CO2 and/or temperature. At the International Rice Research Institute, rice (cv IR72) was grown from germination until maturity for 4 field seasons, the 1994 and 1995 wet and the 1995 and 1996 dry seasons at three different CO2 concentrations (ambient, ambient + 200 and ambient + 300 μL L–1 CO2) and two air temperatures (ambient and ambient + 4 °C) using open-top field chambers placed within a paddy site. Overall, enhanced levels of CO2 alone resulted in significant increases in total biomass at maturity and increased seed yield with the relative degree of enhancement consistent over growing seasons across both temperatures. Enhanced levels of temperature alone resulted in decreases or no change in total biomass and decreased seed yield at maturity across both CO2 levels. In general, simultaneous increases in air temperature as well as CO2 concentration offset the stimulation of biomass and grain yield compared to the effect of CO2 concentration alone. For either the 1995 wet and 1996 dry seasons, additional cultivars (N-22, NPT1 and NPT2) were grown in conjunction with IR72 at the same CO2 and temperature treatments. Among the cultivars tested, N-22 showed the greatest relative response of both yield and biomass to increasing CO2, while NPT2 showed no response and IR72 was intermediate. For all cultivars, however, the combination of increasing CO2 concentration and air temperature resulted in reduced grain yield and declining harvest index compared to increased CO2 alone. Data from these experiments indicate that (a) rice growth and yield can respond positively under tropical paddy conditions to elevated CO2, but that simultaneous exposure to elevated temperature may negate the CO2 response to grain yield; and, (b) sufficient intraspecific variation exists among cultivars for future selection of rice cultivars which may, potentially, convert greater amounts of CO2 into harvestable yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号