首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coexistence of species with different seed sizes is a long‐standing issue in community ecology, and a trade‐off between fecundity and stress tolerance has been proposed to explain co‐occurrence in heterogeneous environments. Here we tested an intraspecific extension of this model: whether such trade‐off also explains seed trait variation among populations of widespread plants under stress gradients. We collected seeds from 14 populations of Plantago coronopus along the Atlantic coast in North Africa and Europe. This herb presents seed dimorphism, producing large basal seeds with a mucilaginous coat that facilitates water absorption (more stress tolerant), and small apical seeds without coats (less stress tolerant). We analysed variation among populations in number, size and mucilage production of basal and apical seeds, and searched for relationships between local environment and plant size. Populations under higher stress (higher temperature, lower precipitation, lower soil organic matter) had fewer seeds per fruit, higher predominance of basal relative to apical seeds, and larger basal seeds with thicker mucilaginous coats. These results strongly suggest a trade‐off between tolerance and fecundity at the fruit level underpins variation in seed traits among P. coronopus populations. However, seed production per plant showed the opposite pattern to seed production per fruit, and seemed related to plant size and other life‐cycle components, as an additional strategy to cope with environmental variation across the range. The tolerance–fecundity model may constitute, under stress gradients, a broader ecological framework to explain trait variation than the classical seed size–number compromise, although several fecundity levels and traits should be considered to understand the diverse strategies of widespread plants to maximise fitness in each set of local conditions.  相似文献   

2.
The success of invasive species is tightly linked to their fitness in a putatively novel environment. While quantitative components of fitness have been studied extensively in the context of invasive species, fewer studies have looked at qualitative components of fitness, such as behavioral plasticity, and their interaction with quantitative components, despite intuitive benefits over the course of an invasion. In particular, learning is a form of behavioral plasticity that makes it possible to finely tune behavior according to environmental conditions. Learning can be crucial for survival and reproduction of introduced organisms in novel areas, for example, for detecting new predators, or finding mates or oviposition sites. Here we explored how oviposition performance evolved in relation to both fecundity and learning during an invasion, using native and introduced Drosophila subobscura populations performing an ecologically relevant task. Our results indicated that, under comparable conditions, invasive populations performed better during our oviposition task than did native populations. This was because invasive populations had higher fecundity, together with similar cognitive performance when compared to native populations, and that there was no interaction between learning and fecundity. Unexpectedly, our study did not reveal an allocation trade‐off (i.e., a negative relationship) between learning and fecundity. On the contrary, the pattern we observed was more consistent with an acquisition trade‐off, meaning that fecundity could be limited by availability of resources, unlike cognitive ability. This pattern might be the consequence of escaping natural enemies and/or competitors during the introduction. The apparent lack of evolution of learning may indicate that the introduced population did not face novel cognitive challenges in the new environment (i.e., cognitive “pre‐adaptation”). Alternatively, the evolution of learning may have been transient and therefore not detected.  相似文献   

3.
The cost of males should give asexual females an advantage when in competition with sexual females. In addition, high‐fecundity asexual genotypes should have an advantage over low‐fecundity clones, leading to reduction in clonal diversity over time. To evaluate fitness components in a natural population, we measured the annual reproductive rate of individual sexual and asexual female Potamopyrgus antipodarum, a New Zealand freshwater snail, in field enclosures that excluded competitors and predators. We used allozyme genotyping to assign the asexual females to particular clonal genotypes. We found that the most fecund asexual clones had similar or higher fecundity as the top 10% of sexual families, suggesting that fecundity selection, even without the cost of males, would lead to replacement of the sexual population by clones. Consequently, we expected that the clones with the highest fecundity would dominate the natural population. Counter to this prediction, we found that high annual reproductive rates did not correlate with the frequency of clones in the natural population. When we exposed the same clones to parasites in the laboratory, we found that resistance to infection was positively correlated with the frequency of clones in the population. The correlation between fecundity and parasite resistance was negative, suggesting a trade‐off between these two traits. Our results thus suggest that parasite resistance is an important short‐term predictor of the success of asexual P. antipodarum in this population.  相似文献   

4.
Across multicellular organisms, the costs of reproduction and self‐maintenance result in a life history trade‐off between fecundity and longevity. Queens of perennial social Hymenoptera are both highly fertile and long‐lived, and thus, this fundamental trade‐off is lacking. Whether social insect males similarly evade the fecundity/longevity trade‐off remains largely unstudied. Wingless males of the ant genus Cardiocondyla stay in their natal colonies throughout their relatively long lives and mate with multiple female sexuals. Here, we show that Cardiocondyla obscurior males that were allowed to mate with large numbers of female sexuals had a shortened life span compared to males that mated at a low frequency or virgin males. Although frequent mating negatively affects longevity, males clearly benefit from a “live fast, die young strategy” by inseminating as many female sexuals as possible at a cost to their own survival.  相似文献   

5.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

6.
A trade‐off between reproduction and somatic maintenance and hence survival is fundamental to life‐history theory. We investigated the relationship between female fecundity and longevity in Homo sapiens using data from 153 countries located all over the world. The raw correlation between life span and fecundity was highly significant with a negative trend. After longevity and fecundity estimates were controlled for by confounding factors such as historical (i.e. human ethnic groups), religious, geographical, socio‐economical and parasitological components, we still observed a negative relationship between the mean female fecundity and the mean longevity in a country. These findings support the hypothesis for the existence of a trade‐off between these two key life‐history traits in humans, as also reported by a recent single longitudinal study in England.  相似文献   

7.
Fitness trade‐offs across episodes of selection and environments influence life‐history evolution and adaptive population divergence. Documenting these trade‐offs remains challenging as selection can vary in magnitude and direction through time and space. Here, we evaluate fitness trade‐offs at the levels of the whole organism and the quantitative trait locus (QTL) in a multiyear field study of Boechera stricta (Brassicaceae), a genetically tractable mustard native to the Rocky Mountains. Reciprocal local adaptation was pronounced for viability, but not for reproductive components of fitness. Instead, local genomes had a fecundity advantage only in the high latitude garden. By estimating realized selection coefficients from individual‐level data on viability and reproductive success and permuting the data to infer significance, we examined the genetic basis of fitness trade‐offs. This analytical approach (Conditional Neutrality‐Antagonistic Pleiotropy, CNAP) identified genetic trade‐offs at a flowering phenology QTL (costs of adaptation) and revealed genetic trade‐offs across fitness components (costs of reproduction). These patterns would not have emerged from traditional ANOVA‐based QTL mapping. Our analytical framework can be applied to other systems to investigate fitness trade‐offs. This task is becoming increasingly important as climate change may alter fitness landscapes, potentially disrupting fitness trade‐offs that took many generations to evolve.  相似文献   

8.
The magnitude and direction of phenotypic selection on emergence date and seedling size in Erigeron annuus was measured to determine the heterogeneity of selection among sites and the proportion of fitness variance explained by seedling size and emergence date. Three disturbance treatments (open, annual vegetation, perennial vegetation) were imposed to test the hypothesis of stronger selection on seedlings in competitive environments. Selection was most heterogeneous early in the life cycle, with significant spatial heterogeneity in the magnitude of selection on a local scale. The disturbance treatments affected only fecundity selection gradients and selection was strongest in open plots. Significant variation in the sign of selection differentials on emergence date was observed for establishment and fall viability selection episodes; at later stages selection varied in magnitude but not direction. Seedlings in the earliest cohort experienced high mortality during establishment, but increased size and fecundity later in the life cycle. Both stabilizing and disruptive selection on emergence date were observed during establishment, but in general selection was purely directional. At Stony Brook most selection on emergence date operated indirectly through seedling size, whereas at the Weld Preserve direct selection was stronger. There were persistent effects of both seedling emergence date and rosette diameter on adult fitness components, and October rosette diameter explained 18% of the total phenotypic variance in fecundity. Overall, viability fitness components were much more important than fecundity selection. Winter survivorship was the single most important episode of selection.  相似文献   

9.
Plant mating systems represent an evolutionary and ecological trade‐off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self‐incompatibility systems exhibit dominance interactions at the S‐locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S‐locus. We investigated this trade‐off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S‐alleles increased mate availability relative to estimates based on individuals that did not share S‐alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life‐history phases evaluated, self‐fertilized offspring suffered a greater than 50% reduction in fitness, while full‐sib and half‐sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self‐incompatibility (SI). This study suggests that dominance interactions at the S‐locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system.  相似文献   

10.
1. Evolutionary increases in dispersal‐related traits are frequently documented during range expansions. Investment in flight‐related traits is energetically costly and a trade‐off with fecundity may be expected during range expansion. 2. However, in contrast to wing‐dimorphic species, this trade‐off is not general in wing‐monomorphic species. In the absence of a dispersal‐‐fecundity trade‐off, an increased investment in clutch size at the expansion front is expected possibly at a cost of reduced offspring size. 3. The study evaluated investment in female flight morphology and fecundity‐related traits (clutch size, hatchling size) and potential trade‐offs among these traits in replicated populations of the poleward range‐expanding damselfly Coenagrion scitulum. 4. Females at the expansion front had a higher relative thorax length, indicating an increased investment in flight; this can be explained by spatial sorting of dispersal ability or in situ natural selection at the expansion front. Edge females produced larger hatchlings, however, this pattern was totally driven by the population‐specific thermal larval regimes and could not be attributed to the range expansion per se. By contrast, clutch sizes did not differ between core and edge populations. There was no signal of a dispersal–fecundity trade‐off either for a trade‐off between clutch size and hatchling size. 5. These results indicate that evolution of a higher dispersal ability at the expansion front of C. scitulum does not trade off with investment in fecundity, hence a dispersal–fecundity trade‐off is unlikely to slow down range expansion of this species.  相似文献   

11.
Fitness results from an optimal balance between survival, mating success and fecundity. The interactions between these three components of fitness vary depending on the selective context, from positive covariation between them, to antagonistic pleiotropic relationships when fitness increases in one reduce the fitness of others. Therefore, elucidating the routes through which selection shapes life history and phenotypic adaptations via these fitness components is of primary significance to understanding ecological and evolutionary dynamics. However, while the fitness components mediated by natural (survival) and sexual (mating success) selection have been debated extensively from most possible perspectives, fecundity selection remains considerably less studied. Here, we review the theoretical basis, evidence and implications of fecundity selection as a driver of sex‐specific adaptive evolution. Based on accumulating literature on the life‐history, phenotypic and ecological aspects of fecundity, we (i) suggest a re‐arrangement of the concepts of fecundity, whereby we coin the term ‘transient fecundity’ to refer to brood size per reproductive episode, while ‘annual’ and ‘lifetime fecundity’ should not be used interchangeably with ‘transient fecundity’ as they represent different life‐history parameters; (ii) provide a generalized re‐definition of the concept of fecundity selection as a mechanism that encompasses any traits that influence fecundity in any direction (from high to low) and in either sex; (iii) review the (macro)ecological basis of fecundity selection (e.g. ecological pressures that influence predictable spatial variation in fecundity); (iv) suggest that most ecological theories of fecundity selection should be tested in organisms other than birds; (v) argue that the longstanding fecundity selection hypothesis of female‐biased sexual size dimorphism (SSD) has gained inconsistent support, that strong fecundity selection does not necessarily drive female‐biased SSD, and that this form of SSD can be driven by other selective pressures; and (vi) discuss cases in which fecundity selection operates on males. This conceptual analysis of the theory of fecundity selection promises to help illuminate one of the central components of fitness and its contribution to adaptive evolution.  相似文献   

12.
In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade‐offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity‐conception interval). Fighting ability also showed low but positive genetic correlations with “masculine” morphological traits, and negative correlations with “feminine” traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of “masculinization” counteracting the official selection for milk yield. Similar evolutionary trade‐off between success in competition and fitness components may be present in various species experiencing female competition.  相似文献   

13.
Adaptive differentiation between populations is often proposed to be the product of multiple interacting selective pressures, although empirical support for this is scarce. In white clover, populations show adaptive differentiation in frequencies of cyanogenesis, the ability to produce hydrogen cyanide after tissue damage. This polymorphism arises through independently segregating polymorphisms for the presence/absence of two required cyanogenic components, cyanogenic glucosides and their hydrolysing enzyme. White clover populations worldwide have evolved a series of recurrent, climate‐associated clines, with higher frequencies of cyanogenic plants in warmer locations. These clines have traditionally been hypothesized to reflect a fitness trade‐off between chemical defence in herbivore‐rich areas (warmer climates) and energetic costs of producing cyanogenic components in areas of low herbivore pressure (cooler climates). Recent observational studies suggest that cyanogenic components may also be beneficial in water‐stressed environments. We investigated fitness trade‐offs associated with temperature‐induced water stress in the cyanogenesis system using manipulative experiments in growth chambers and population surveys across a longitudinal precipitation gradient in the central United States. We find that plants producing cyanogenic glucosides have higher relative fitness in treatments simulating a moderate, persistent drought stress. In water‐neutral treatments, there are energetic costs to producing cyanogenic components, but only in treatments with nutrient stress. These fitness trade‐offs are consistent with cyanogenesis frequencies in natural populations, where we find clinal variation in the proportion of plants producing cyanogenic glucosides along the precipitation gradient. These results suggest that multiple selective pressures interact to maintain this adaptive polymorphism and that modelling adaptation will require knowledge of environment‐specific fitness effects.  相似文献   

14.
Specialization is fundamentally important in biology because specialized traits allow species to expand into new environments, in turn promoting population differentiation and speciation. Specialization often results in trade‐offs between traits that maximize fitness in one environment but not others. Despite the ubiquity of trade‐offs, we know relatively little about how consistently trade‐offs evolve between populations when multiple sets of populations experience similarly divergent selective regimes. In the present study, we report a case study on Brachyrhaphis fishes from different predation environments. We evaluate apparent within/between population trade‐offs in burst‐speed and endurance at two levels of evolutionary diversification: high‐ and low‐predation populations of Brachyrhaphis rhabdophora, and sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis, which occur in high‐ and low‐predation environments, respectively. Populations of Brachyrhaphis experiencing different predation regimes consistently evolved swimming specializations indicative of a trade‐off between two swimming forms that are likely highly adaptive in the environment in which they occur. We show that populations have become similarly locally adapted at both levels of diversification, suggesting that swimming specialization has evolved rather rapidly and persisted post‐speciation. Our findings provide valuable insight into how local adaptation evolves at different stages of evolutionary divergence.  相似文献   

15.
  • Trade‐offs between reproduction, growth and survival arise from limited resource availability in plants. Environmental stress is expected to exacerbate these negative correlations, but no studies have evaluated variation in life‐history trade‐offs throughout species geographic ranges. Here we analyse the costs of growth and reproduction across the latitudinal range of the widespread herb Plantago coronopus in Europe.
  • We monitored the performance of thousands of individuals in 11 populations of P. coronopus, and tested whether the effects of growth and reproduction on a set of vital rates (growth, probability of survival, probability of reproduction and fecundity) varied with local precipitation and soil fertility. To account for variation in internal resources among individuals, we analysed trade‐offs correcting for differences in size.
  • Growth was negatively affected by previous growth and reproduction. We also found costs of growth and reproduction on survival, reproduction probability and fecundity, but only in populations with low soil fertility. Costs also increased with precipitation, possibly due to flooding‐related stress. In contrast, growth was positively correlated with subsequent survival, and there was a positive covariation in reproduction between consecutive years under certain environments, a potential strategy to exploit temporary benign conditions.
  • Overall, we found both negative and positive correlations among vital rates across P. coronopus geographic range. Trade‐offs predominated under stressful conditions, and positive correlations arose particularly between related traits like reproduction investment across years. By analysing multiple and diverse fitness components along stress gradients, we can better understand life‐history evolution across species’ ranges, and their responses to environmental change.
  相似文献   

16.
Reduced body size and accelerated life cycle due to warming are considered major ecological responses to climate change with fitness costs at the individual level. Surprisingly, we know little about how relevant ecological factors can alter these life history trade‐offs and their consequences for individual fitness. Here, we show that food modulates temperature‐dependent effects on body size in the water flea Daphnia magna and interacts with temperature to affect life history parameters. We exposed 412 individuals to a factorial manipulation of food abundance and temperature, tracked each reproductive event, and took daily measurements of body size from each individual. High temperature caused a reduction in maximum body size in both food treatments, but this effect was mediated by food abundance, such that low food conditions resulted in a reduction of 20% in maximum body size, compared with a reduction of 4% under high food conditions. High temperature resulted in an accelerated life cycle, with pronounced fitness cost at low levels of food where only a few individuals produced a clutch. These results suggest that the mechanisms affecting the trade‐off between fast growth and final body size are food‐dependent, and that the combination of low levels of food and high temperature could potentially threaten viability of ectotherms.  相似文献   

17.
Alleles conferring a higher adaptive value in one environment may have a detrimental impact on fitness in another environment. Alleles conferring resistance to pesticides and drugs provide textbook examples of this trade‐off as, in addition to conferring resistance to these molecules, they frequently decrease fitness in pesticide/drug‐free environments. We show here that resistance to chlorpyrifos, an organophosphate (OP), in Chinese populations of the diamondback moth, Plutella xylostella, is conferred by two mutations of ace1 – the gene encoding the acetylcholinesterase enzyme targeted by OPs – affecting the amino acid sequence of the corresponding protein. These mutations were always linked, consistent with the segregation of a single resistance allele, ace1R, carrying both mutations, in the populations studied. We monitored the frequency of ace1R (by genotyping more than 20 000 adults) and the level of resistance (through bioassays on more than 50 000 individuals) over several generations. We found that the ace1R resistance allele was costly in the absence of insecticide and that this cost was likely recessive. This fitness costs involved a decrease in fecundity: females from resistant strains laid 20% fewer eggs, on average, than females from susceptible strains. Finally, we found that the fitness costs associated with the ace1R allele were greater at high temperatures. At least two life history traits were involved: longevity and fecundity. The relative longevity of resistant individuals was affected only at high temperatures and the relative fecundity of resistant females – which was already affected at temperatures optimal for development – decreased further at high temperatures. The implications of these findings for resistance management are discussed.  相似文献   

18.
We looked for life‐history trade‐offs between flowering, vegetative growth and somatic maintenance in the common woodland herb Anemone nemorosa. A. nemorosa forms a horizontal rhizome system consisting of previously formed annual segments and terminated by a flowering or non‐flowering shoot. Resources acquired by the aboveground parts are used for flowering, seed production, storage and growth of the annual segments. Resources stored in the rhizome during the growing period are used for preformation of buds, somatic maintenance between two growing periods and development of aboveground parts in the following spring. We hypothesised that the decision to invest in flower buds depends on the amount of resources stored in the recently formed annual segment. We also hypothesised a trade‐off between flowering and segment growth and, finally, as a consequence, we expected individual rhizomes to alternate between the flowering and the non‐flowering state. We found that segments producing flower buds were significantly longer than non‐flowering segments, indicating that resource level influences the function of the preformed buds. Contrary to our expectations, we found flowering rhizomes produced longer annual segments than non‐flowering rhizomes. We suggest the larger leaf area of flowering rhizomes and occasional abortion of flowers or seeds as possible mechanisms behind this pattern. Our study shows that even though the decision to produce a flower bud is taken in another time‐frame than that in which the actual flowering and fruiting takes place, an ostensibly inexpedient decision is changed to a neutral or even an advantageous incident.  相似文献   

19.
Diversity of flower traits is often proposed as the outcome of selection exerted by pollinators. Positive directional pollinator‐mediated selection on floral size has been widely shown to reduce phenotypic variance. However, the underlying mechanism of maintaining within‐population floral color polymorphism is poorly understood. Divergent selection, mediated by different pollinators or by both mutualists and antagonists, may create and maintain such polymorphism, but it has rarely been shown to result from differential behavior of one pollinator. We tested whether different behaviors of the same pollinators in morning and evening are associated with dimorphic floral trait in Linum pubescens, a Mediterranean annual plant that exhibits variable within‐population frequencies of dark‐ and light‐colored flower tubes. Usia bicolor bee‐flies, the major pollinators of L. pubescens, are mostly feeding in the flower in the morning, while in the evening they are mostly visiting the flowers for mating. In 2 years of studying L. pubescens in a single large population in the Carmel, Israel, we found in one year that dark‐centered flowers received significantly higher fraction of visits in the morning. Fitness was positively affected by number of visits, but no fitness differences were found between tube‐color morphs, suggesting that both morphs have similar pollination success. Using mediation analysis, we found that flower size was under positive directional pollinator‐mediated selection in both years, but pollinator behavior did not explain entirely this selection, which was possibly mediated also by other agents, such as florivores or a‐biotic stresses. While most pollinator‐mediated selection studies show that flower size signals food reward, in L. pubescens, it may also signal for mating place, which may drive positive selection. While flower size found to be under pollinator‐mediated selection in L. pubescens, differential behavior of the pollinators in morning and evening did not seem to explain flower color polymorphism.  相似文献   

20.
Most larval drosophilids eat the microorganisms that develop in rotting fruit, a relatively protein‐rich resource. By contrast, the spotted‐wing Drosophila suzukii Matsumara (Diptera: Drosophilidae) uniquely develops in ripening fruit, a protein‐poor, carbohydrate‐rich resource. This shift in larval nutritional niche has led to D. suzukii being a significant agricultural pest in the U.S.A. and Europe. Although occupying a new niche may benefit a species by reducing competition, adaptation in host use may generate trade‐offs affecting fitness. To test the hypothesis that fitness trade‐offs will change with adaptation to novel larval diets, D. suzukii larval development on either a diet of a fresh, ripe blueberry (a natural host) or standard artificial Drosophila media (protein‐rich) is compared and the effect of diet on development time from egg to adult, adult body size and male wing spot area, and female fecundity is assessed. Larval development time differs, with larvae on the blueberry emerging as adults earlier than those on the artificial medium, although other fitness measures do not vary between the two diets. In addition, the faster development time on a blueberry does not trade off with body size as expected, although early fecundity is delayed in females that develop on blueberries. Thus, adaptation to a novel larval diet environment does not come at a cost to the ability to develop in protein‐rich resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号