首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
In temperate regions, an organism's ability to rapidly adapt to seasonally varying environments is essential for its survival. In response to seasonal changes in selection pressure caused by variation in temperature, humidity, and food availability, some organisms exhibit plastic changes in phenotype. In other cases, seasonal variation in selection pressure can rapidly increase the frequency of genotypes that offer survival or reproductive advantages under the current conditions. Little is known about the relative influences of plastic and genetic changes in short‐lived organisms experiencing seasonal environmental fluctuations. Cold hardening is a seasonally relevant plastic response in which exposure to cool, but nonlethal, temperatures significantly increases the organism's ability to later survive at freezing temperatures. In the present study, we demonstrate seasonal variation in cold hardening in Drosophila melanogaster and test the extent to which plasticity and adaptive tracking underlie that seasonal variation. We measured the post‐cold hardening freeze tolerance of flies from outdoor mesocosms over the summer, fall, and winter. We bred outdoor mesocosm‐caught flies for two generations in the laboratory and matched each outdoor cohort to an indoor control cohort of similar genetic background. We cold hardened all flies under controlled laboratory conditions and then measured their post‐cold hardening freeze tolerance. Comparing indoor and field‐caught flies and their laboratory‐reared G1 and G2 progeny allowed us to determine the roles of seasonal environmental plasticity, parental effects, and genetic changes on cold hardening. We also tested the relationship between cold hardening and other factors, including age, developmental density, food substrate, presence of antimicrobials, and supplementation with live yeast. We found strong plastic responses to a variety of field‐ and laboratory‐based environmental effects, but no evidence of seasonally varying parental or genetic effects on cold hardening. We therefore conclude that seasonal variation in post‐cold hardening freeze tolerance results from environmental influences and not genetic changes.  相似文献   

2.
Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos‐resistant homozygote (RR) and chlorpyrifos‐susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide‐resistant and insecticide‐susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20, hsp90, Apaf‐1, and caspase‐7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf‐1, caspase‐9, and caspase‐7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed.  相似文献   

3.
Defence against pathogenic infection can take two forms: resistance and tolerance. Resistance is the ability of the host to limit a pathogen burden, whereas tolerance is the ability to limit the negative consequences of infection at a given level of infection intensity. Evolutionarily, a tolerance strategy that is independent of resistance could allow the host to avoid mounting a costly immune response and, theoretically, to avoid a co‐evolutionary arms race between pathogen virulence and host resistance. Biomedically, understanding the mechanisms of tolerance and how they relate to resistance could potentially yield treatment strategies that focus on health improvement instead of pathogen elimination. To understand the impact of tolerance on host defence and identify genetic variants that determine host tolerance, we defined genetic variation in tolerance as the residual deviation from a binomial regression of fitness under infection against infection intensity. We then performed a genomewide association study to map the genetic basis of variation in resistance to and tolerance of infection by the bacterium Providencia rettgeri. We found a positive genetic correlation between resistance and tolerance, and we demonstrated that the level of resistance is highly predictive of tolerance. We identified 30 loci that predict tolerance, many of which are in genes involved in the regulation of immunity and metabolism. We used RNAi to confirm that a subset of mapped genes have a role in defence, including putative wound repair genes grainy head and debris buster. Our results indicate that tolerance is not an independent strategy from resistance, but that defence arises from a collection of physiological processes intertwined with canonical immunity and resistance.  相似文献   

4.
Wolbachia, intracellular endosymbionts, are estimated to infect about half of all arthropod species. These bacteria manipulate their hosts in various ways for their maximum benefits. The rising global temperature may accelerate species migration, and thus, horizontal transfer of Wolbachia may occur across species previously not in contact. We transinfected and then cured the alpine fly Drosophila nigrosparsa with Wolbachia strain wMel to study its effects on this species. We found low Wolbachia titer, possibly cytoplasmic incompatibility, and an increase in locomotion of both infected larvae and adults compared with cured ones. However, no change in fecundity, no impact on heat and cold tolerance, and no change in wing morphology were observed. Although Wolbachia increased locomotor activities in this species, we conclude that D. nigrosparsa may not benefit from the infection. Still, D. nigrosparsa can serve as a host for Wolbachia because vertical transmission is possible but may not be as high as in the native host of wMel, Drosophila melanogaster.  相似文献   

5.
Phenotypic plasticity may increase the performance and fitness and allow organisms to cope with variable environmental conditions. We studied within‐generation plasticity and transgenerational effects of thermal conditions on temperature tolerance and demographic parameters in Drosophila melanogaster. We employed a fully factorial design, in which both parental (P) and offspring generations (F1) were reared in a constant or a variable thermal environment. Thermal variability during ontogeny increased heat tolerance in P, but with demographic cost as this treatment resulted in substantially lower survival, fecundity, and net reproductive rate. The adverse effects of thermal variability (V) on demographic parameters were less drastic in flies from the F1, which exhibited higher net reproductive rates than their parents. These compensatory responses could not totally overcome the challenges of the thermally variable regime, contrasting with the offspring of flies raised in a constant temperature (C) that showed no reduction in fitness with thermal variation. Thus, the parental thermal environment had effects on thermal tolerance and demographic parameters in fruit fly. These results demonstrate how transgenerational effects of environmental conditions on heat tolerance, as well as their potential costs on other fitness components, can have a major impact on populations’ resilience to warming temperatures and more frequent thermal extremes.  相似文献   

6.
  • The effects of habitat fragmentation on plant populations are complex, as it might disrupt many ecological processes, including plant reproduction and plant–animal interactions. Gypsum specialist plants may be resilient to fragmentation due to their evolutionary history in fragmented landscapes, but the effects on non‐specialist plants occurring in gypsum are unknown.
  • We conducted a study focusing on different aspects of the reproductive cycle of Astragalus incanus subsp. incanus, a plant facultatively linked to gypsum soils. We focused on plant fecundity and pre‐dispersal predation, obtained from field observations, and offspring performance, assessed in a common garden. Beyond fragment size and connectivity, we also considered habitat quality, population size and density and plant size as predictors.
  • Fragment size and connectivity had no effect on plant fecundity, but jointly determined fruit predation, while fragment size was positively related to offspring growth. Population density, rather than population size, had a positive effect on predation but negatively affected plant fecundity and offspring performance. Habitat quality reduced both plant fecundity and predation incidence.
  • In this non‐specialist species, habitat fragmentation, population features and habitat quality affect different facets of plant performance. Predation was the only process clearly affected by fragmentation variables, fecundity mainly depended on population features and offspring performance and was better explained by mother plant identity. Our results show the need to consider habitat and population features together with fragment size and connectivity in order to assess the effects of fragmentation. Importantly, these effects can involve different aspects of plant reproduction, including plant–animal interactions.
  相似文献   

7.
8.
Immune defenses are expected to be crucial for survival under the considerable parasite pressures experienced by wild animals. However, our understanding of the association between immunity and fitness in nature remains limited due to both the complexity of the vertebrate immune system and the often‐limited availability of immune reagents in nonmodel organisms. Here, we use methods and reagents developed by veterinary researchers for domestic ungulates on blood samples collected from a wild Soay sheep population, to evaluate an unusually broad panel of immune parameters. Our evaluation included different innate and acquired immune cell types as well as nematode parasite‐specific antibodies of different isotypes. We test how these markers correlate with one another, how they vary with age‐group and sex, and, crucially, whether they predict overwinter survival either within or among demographic groups. We found anticipated patterns of variation in markers with age, associated with immune development, and once these age trends were accounted for, correlations among our 11 immune markers were generally weak. We found that females had higher proportions of naïve T cells and gamma–delta T cells than males, independent of age, while our other markers did not differ between sexes. Only one of our 11 markers predicted overwinter survival: sheep with higher plasma levels of anti‐nematode IgG antibodies were significantly more likely to survive the subsequent high mortality winter, independent of age, sex, or weight. This supports a previous finding from this study system using a different set of samples and shows that circulating antibody levels against ecologically relevant parasites in natural systems represent an important parameter of immune function and may be under strong natural selection. Our data provide rare insights into patterns of variation among age‐ and sex groups in different T‐cell subsets and antibody levels in the wild, and suggest that certain types of immune response—notably those likely to be repeatable within individuals and linked to resistance to ecologically relevant parasites—may be most informative for research into the links between immunity and fitness under natural conditions.  相似文献   

9.
10.
11.
Environmental temperature has important effects on the physiology and life history of ectothermic animals, including investment in the immune system and the infectious capacity of pathogens. Numerous studies have examined individual components of these complex systems, but little is known about how they integrate when animals are exposed to different temperatures. Here, we use the Indian meal moth (Plodia interpunctella) to understand how immune investment and disease resistance react and potentially trade‐off with other life‐history traits. We recorded life‐history (development time, survival, fecundity, and body size) and immunity (hemocyte counts, phenoloxidase activity) measures and tested resistance to bacterial (E. coli) and viral (Plodia interpunctella granulosis virus) infection at five temperatures (20–30°C). While development time, lifespan, and size decreased with temperature as expected, moths exhibited different reproductive strategies in response to small changes in temperature. At cooler temperatures, oviposition rates were low but tended to increase toward the end of life, whereas warmer temperatures promoted initially high oviposition rates that rapidly declined after the first few days of adult life. Although warmer temperatures were associated with strong investment in early reproduction, there was no evidence of an associated trade‐off with immune investment. Phenoloxidase activity increased most at cooler temperatures before plateauing, while hemocyte counts increased linearly with temperature. Resistance to bacterial challenge displayed a complex pattern, whereas survival after a viral challenge increased with rearing temperature. These results demonstrate that different immune system components and different pathogens can respond in distinct ways to changes in temperature. Overall, these data highlight the scope for significant changes in immunity, disease resistance, and host–parasite population dynamics to arise from small, biologically relevant changes to environmental temperature. In light of global warming, understanding these complex interactions is vital for predicting the potential impact of insect disease vectors and crop pests on public health and food security.  相似文献   

12.
In this study, we have used untargeted global metabolomic analysis to determine and compare the chemical nature of the metabolites altered during the infection of tomato plants (cv. Ailsa Craig) with Botrytis cinerea (Bot) or Pseudomonas syringae pv. tomato DC3000 (Pst), pathogens that have different invasion mechanisms and lifestyles. We also obtained the metabolome of tomato plants primed using the natural resistance inducer hexanoic acid and then infected with these pathogens. By contrasting the metabolomic profiles of infected, primed, and primed + infected plants, we determined not only the processes or components related directly to plant defense responses, but also inferred the metabolic mechanisms by which pathogen resistance is primed. The data show that basal resistance and hexanoic acid‐induced resistance to Bot and Pst are associated with a marked metabolic reprogramming. This includes significant changes in amino acids, sugars and free fatty acids, and in primary and secondary metabolism. Comparison of the metabolic profiles of the infections indicated clear differences, reflecting the fact that the plant's chemical responses are highly adapted to specific attackers. The data also indicate involvement of signaling molecules, including pipecolic and azelaic acids, in response to Pst and, interestingly, to Bot. The compound 1‐methyltryptophan was shown to be associated with the tomato–Pst and tomato–Bot interactions as well as with hexanoic acid‐induced resistance. Root application of this Trp‐derived metabolite also demonstrated its ability to protect tomato plants against both pathogens.  相似文献   

13.
Plants are highly capable of recognizing and defending themselves against invading microbes. Adapted plant pathogens secrete effector molecules to suppress the host's immune system. These molecules may be recognized by host‐encoded resistance proteins, which then trigger defense in the form of the hypersensitive response (HR) leading to programmed cell death of the host tissue at the infection site. The three proteins PEN1, PEN2 and PEN3 have been found to act as central components in cell wall‐based defense against the non‐adapted powdery mildew Blumeria graminis fsp. hordei (Bgh). We found that loss of function mutations in any of the three PEN genes cause decreased hypersensitive cell death triggered by recognition of effectors from oomycete and bacterial pathogens in Arabidopsis. There were considerable additive effects of the mutations. The HR induced by recognition of AvrRpm1 was almost completely abolished in the pen2 pen3 and pen1 pen3 double mutants and the loss of cell death could be linked to indole glucosinolate breakdown products. However, the loss of the HR in pen double mutants did not affect the plants' ability to restrict bacterial growth, whereas resistance to avirulent isolates of the oomycete Hyaloperonospora arabidopsidis was strongly compromised. In contrast, the double and triple mutants demonstrated varying degrees of run‐away cell death in response to Bgh. Taken together, our results indicate that the three genes PEN1, PEN2 and PEN3 extend in functionality beyond their previously recognized functions in cell wall‐based defense against non‐host pathogens.  相似文献   

14.
Understanding plant‐mediated interactions in agricultural systems may facilitate the development of novel and improved management practices, which is important, as management of these insects is currently heavily reliant on insecticides. The fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae, Prodeniini), is a sporadic pest of rice fields in the southern USA. In southwestern Louisiana, this defoliating insect typically attacks rice early in the growth season, before fields are flooded. Defoliation by fall armyworm larvae may trigger increased expression of plant defenses, which may result in increased resistance to subsequent herbivores. The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae, Stenopelmini), enters rice fields as an adult both before and after flooding, but oviposition and larval infestation occur only after fields are flooded. RWW may be affected by changes in plant resistance caused by fall armyworm defoliation before flooding. The objectives of this study were to investigate the plant‐mediated effects of natural and artificial defoliation on population densities of RWW larvae after flooding and on the ability of rice plants to compensate for root injury by RWW larvae. In the 2015 season, fall armyworm defoliation before flooding resulted in reduced RWW densities after flooding. However, in 2016 no significant effects of fall armyworm defoliation on densities of RWW larvae were detected. Similarly, mechanical defoliation of rice before flooding did not affect RWW densities after flooding. Although lowest yields were observed in plots subjected to both root injury and defoliation, there was little evidence of a greater than additive reduction in yields from simultaneous injury. These results suggest a lack of plant‐mediated interactions among these two pests in rice in the southern USA.  相似文献   

15.
16.
Li, H., Zhou, Z.‐S., Ding, G.‐H. and Ji, X. 2011. Fluctuations in incubation temperature affect incubation duration but not morphology, locomotion and growth of hatchlings in the sand lizard Lacerta agilis (Lacertidae). —Acta Zoologica (Stockholm) 00 : 1–8. Studies looking for potential effects of temperature and temperature fluctuations on phenotypic traits of reptile hatchlings have shown species variation, but have not always allowed a distinction between effects of fluctuation per se and temperature extremes themselves. To examine whether incubation temperature fluctuation has a key role in influencing the phenotype of offspring, we incubated eggs of the sand lizard Lacerta agilis at one of the four temperature regimes (27, 27 ± 2, 27 ± 4 and 27 ± 6 °C). We found that: (1) hatchlings incubated under the four temperature regimes did not differ from each other in any of the morphological and physiological traits examined; (2) interactions that included temperature treatment did not affect any trait examined; (3) the mean incubation length was longer in the 27 ± 6 °C treatment than in the other three treatments; and (4) female hatchlings were shorter in head length and width but longer in snout‐vent length as well as abdomen length than males derived from the same‐sized egg. Our data show that both the type and the magnitude of temperature variation can affect incubation length. We found no evidence for phenotypic divergence in responses to temperature fluctuations during incubation and therefore suggest that temperature variation does not affect the phenotype of hatchlings in L. agilis.  相似文献   

17.
Genetic diversity may play an analogous role to species diversity, as it can contribute to ecosystem function and stability, and provision of ecosystem services. In the Baltic Sea, perennial algal beds are often comprised of only Fucus vesiculosus and the amount of genetic variation in fitness‐related traits (i.e., the ability of the alga to photosynthesize or withstand stress) will thus determine the alga's local persistence in a changing environment. To study genetic variation in the crucial traits behind persistence we grew replicate vegetative branches that came from the same genotype in common gardens. We quantified osmotic stress tolerance and recovery responses by exposing branches to desiccation, freezing, and hyposalinity regimens. Our results show that genetic variation among genotypes was apparent for some photosynthetic parameters (maximal electron transport rate, saturation irradiance for electron transport, nonphotochemical quenching) and growth. Algae tolerated freezing (1,440 min at ?2.5°C) and hyposalinity (1,560 min at 2.5) well, but did not recover from desiccation (70 min at 12°C, causing ~94% water loss). Furthermore, we found very little if any evidence on genetic variation in tolerance to these stressors. Our results suggest that low salinity and cold winters in the northern marginal populations selected for hyposalinity and freezing tolerant genotypes, possibly eroding genetic variation in tolerance, but that tolerance to harsh desiccation has been lost, likely due to relaxed selection. The overall availability of genetic variation in fitness related traits might be supportive for F. vesiculosus during adaptation to gradual changes of its environment.  相似文献   

18.
19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号