首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在实验室条件下研究了不同温度下刀角瓢虫Serangium japonicum对健康和感染番茄褪绿病毒(Tomato chlorosis virus,ToCV)番茄上的烟粉虱Bemisia tabaci的捕食效果.结果表明,无论在健康番茄还是感染ToCV番茄上,刀角瓢虫均可以取食烟粉虱的卵和若虫,对卵的捕食量最大,且对烟...  相似文献   

2.
Tomato chlorosis virus (ToCV) is a whitefly‐transmitted, phloem‐limited, bipartite Crinivirus. In 2012, severe interveinal symptoms characteristic of ToCV infections were observed in greenhouse tomato plants in the Shandong province of China. High levels of infestation by whiteflies (Bemisia tabaci), which transmit ToCV, were also observed on tomato plants in all the greenhouses investigated. The presence of ToCV was confirmed by specific RT‐PCR either in the sampled plants or in the whiteflies collected from the ventral surface of the leaves of diseased plants. The complete genomic nucleotide sequences (RNA1 and RNA2) of the Shandong isolate of ToCV (ToCV‐SDSG) were determined and analysed. ToCV‐SDSG RNA1 consisted of 8594 nucleotides encompassing four open reading frames (ORFs). ToCV‐SDSG RNA2 consisted of 8242 nucleotides encompassing nine ORFs. Phylogenetic analysis suggests that the Chinese ToCV‐SDSG isolate is most similar to the ToCV‐Florida isolate.  相似文献   

3.
Interveinal leaf chlorosis, brittleness, limited necrotic flecking or bronzing developed on greenhouse‐grown tobacco and tomato plants at Nanjing Agricultural University from 2010 to 2013. A positive RT‐PCR using a pair of degenerate primers for Crinivirus confirmed the diseased plants were infected with Tomato chlorosis virus (ToCV). The complete RNA 1 genomic sequence of this ToCV isolate was determined; it comprises of 8596 nucleotides with four open reading frames. Phylogenetic analysis of ToCV isolates from diverse geographical regions categorized the ToCV isolates into two main groups. Group one consisted of Chinese, American‐Florida, Greek and Brazilian isolates, while Group two contained only the Spanish isolate. The first group had two subgroups, one of Chinese and American‐Florida isolates, while the other subgroup had Greek and Brazilian isolates. This is the first study of the complete nucleotide sequence of the RNA 1 of ToCV isolated from China.  相似文献   

4.
By comparing the partial nucleotide sequences of the heat shock protein HSP70 homologue gene, we assessed the genetic diversity of Brazilian tomato isolates of Tomato chlorosis virus (ToCV), as well as their relationship with other ToCV isolates found worldwide. The Brazilian ToCV isolates shared 99.9–100% nucleotide identity, which indicates low genetic diversity. Brazilian ToCV isolates showed a closer evolutionary relationship to those from Mediterranean countries. Based on these results, the origin of Brazilian ToCV isolates and the possible number of introductions of the virus into Brazil are discussed.  相似文献   

5.
Bemisia tabaci is one of the most important global agricultural insect pests, being a vector of emerging plant viruses such as begomoviruses and criniviruses that cause serious problems in many countries. Although knowledge of the genetic diversity of B. tabaci populations is important for controlling this pest and understanding viral epidemics, limited information is available on this pest in Brazil. A survey was conducted in different locations of São Paulo and Mato Grosso states, and the phylogenetic relationships of B. tabaci individuals from 43 populations sampled from different hosts were analysed based on partial mitochondrial cytochrome oxidase 1 gene (mtCOI) sequences. According to the recently proposed classification of the B. tabaci complex, which employs the 3.5% mtCOI sequence divergence threshold for species demarcation, most of the specimens collected were found to belong to the Middle East‐Asia Minor 1 species, which includes the invasive populations of the commonly known B biotype, within the Africa/Middle East/Asia Minor high‐level group. Three specimens collected from Solanun gilo and Ipomoea sp. were grouped together and could be classified in the New World species that includes the commonly known A biotype. However, six specimens collected from Euphorbia heterophylla, Xanthium cavanillesii and Glycine maxima could not be classified into any of the 28 previously proposed species, although according to the 11% mtCOI sequence divergence threshold, they belong to the New World high‐level group. These specimens were classified into a new recently proposed species named New World 2 that includes populations from Argentina. Middle East‐Asia Minor 1, New World and New World 2 were differentiated by RFLP analysis of the mtCOI gene using TaqI enzyme. Taq I analysis in silico also differentiates these from Mediterranean species, thus making this method a convenient tool to determine population dynamics, especially critical for monitoring the presence of this exotic pest in Brazil.  相似文献   

6.
7.
Bemisia tabaci, a resistance‐prone insect pest, is a cryptic species complex with important invasive biotypes such as B and Q. The biotype and resistance statuses of this pest in Malaysia remain unclear. This study assessed the biotype and resistance status of a number of contemporary populations of B. tabaci based on the mtCO1 marker and the dose‐response method, respectively. The Pahang (PHG) population was labelled as the Q biotype, while the remainder of the populations belonged to the Asia 1 biotype. A very low level of resistance for profenofos, cypermethrin, and imidacloprid was detected for all populations [resistance factor (RF) < 10]. Resistance to diafenthiuron ranged from very low to very high (RF > 100). All populations showed a very low level of resistance against pymetrozine except Q‐type PHG population, which exhibited a very high level of resistance. For most insecticides, the highest level of resistance was detected in the PHG population. The implications of these findings for better management of this noxious pest are discussed.  相似文献   

8.
Abstract To better understand the etiology of begomovirus epidemics in regions under invasion we need to know how indigenous and invasive whitefly vectors respond to virus infection. We investigated both direct and indirect effects of infection with Tomato yellow leaf curl virus (TYLCV) on the performance of the invasive Q biotype and the indigenous Asian ZHJ2 biotype of whitefly Bemisia tabaci. The Q biotype performed better than the ZHJ2 biotype on either uninfected or virus‐infected tomato plants. However, virus‐infection of host plants did not, or only marginally affected, the performance of either biotype of whiteflies in terms of fecundity, longevity, survival, development and population increase. Likewise, association of the vectors with TYLCV did not affect fecundity and longevity of the Q or ZHJ2 biotypes on cotton, a non‐host of TYLCV. These results indicate that the alien Q biotype whitefly, but not the indigenous ZHJ2 biotype, is likely to become the major vector of TYLCV in the field and facilitate virus epidemics.  相似文献   

9.
The whitefly Bemisia tabaci is a pest of many agricultural and ornamental crops worldwide and particularly in Africa. It is a complex of cryptic species, which is extremely polyphagous with hundreds of host plants identified around the world. Previous surveys in western Africa indicated the presence of two biotypes of the invasive MED species (MED‐Q1 and MED‐Q3) living in sympatry with the African species SSA and ASL. This situation constitutes one of the rare cases of local coexistence of various genetic entities within the B. tabaci complex. In order to study the dynamics of the distribution and abundance of genetic entities within this community and to identify potential factors that could contribute to coexistence, we sampled B. tabaci populations in Burkina Faso in 2015 and 2016 on various plants, and also their parasitoids. All four genetic entities were still recorded, indicating no exclusion of local species by the MED species. While B. tabaci individuals were found on 55 plant species belonging to eighteen (18) families showing the high polyphagy of this pest, some species/biotypes exhibited higher specificity. Two parasitoid species (Eretmocerus mundus and Encarsia vandrieschei) were also recorded with Emundus being predominant in most localities and on most plants. Our data indicated that whitefly abundance, diversity, and rate of parasitism varied according to areas, plants, and years, but that parasitism rate was globally highly correlated with whitefly abundance suggesting density dependence. Our results also suggest dynamic variation in the local diversity of B. tabaci species/biotypes from 1 year to the other, specifically with MED‐Q1 and ASL species. This work provides relevant information on the nature of plant–B. tabaci‐parasitoid interactions in West Africa and identifies that coexistence might be stabilized by niche differentiation for some genetic entities. However, MED‐Q1 and ASL show extensive niche overlap, which could ultimately lead to competitive exclusion.  相似文献   

10.
Virus infection may change not only the host‐plant phenotypic (morphological and physiological) characteristics, but can also modify the behavior of their insect vector in a mutualistic or rather antagonistic manner, to promote their spread to new hosts. Viruses differ in their modes of transmission and depend on vector behavior for successful spread. Here, we investigated the effects of the semi‐persistently transmitted Tomato chlorosis virus (ToCV, Crinivirus) and the persistent circulative Tomato severe rugose virus (ToSRV, Begomovirus) on alighting preferences and arrestment behavior of their whitefly vector Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East Asia Minor 1 (MEAM1) on tomato plants (Solanum lycopersicum L. cv. Santa Clara, Solanaceae). The vector alighting preferences between infected and uninfected plants in choice assays were apparently influenced by the presence of ToCV and ToSRV in the whiteflies or by their previous exposure to infected plants. The observed changes in vector behavior do not seem to benefit the spread of ToCV: non‐viruliferous insects clearly preferred mock‐inoculated plants, whereas ToCV‐viruliferous insects landed on mock‐inoculated and ToCV‐infected plants, indicating a partial change in insect behavior – ToCV was able to directly affect the preference of its vector B. tabaci, but this change in insect behavior did not affect the virus spread because viruliferous insects landed on mock‐inoculated and infected plants indistinctly. In contrast, ToSRV‐viruliferous insects preferred to land on mock‐inoculated plants, a behavior that increases the probability of spread to new host plants. In the arresting behavior assay, the majority of the insects remained on mock‐inoculated plants when released on them. A greater number of insects moved toward mock‐inoculated plants when initially released on ToCV‐ or ToSRV‐infected plants, suggesting that these viruses may repel or reduce the nutritional quality of the host plants for B. tabaci MEAM1.  相似文献   

11.
Electron microscopy studies were carried out to investigate the cytopathological changes induced in tomato leaves by Tomato torrado virus (ToTV) that infects tomato plants worldwide causing severe necrotic symptoms. Plants infected with one of the Polish isolates of ToTV were used for cytopathological research. The results revealed severe cellular alterations, especially in Solanum lycopersicum. Moreover, it was shown that crystalline aggregates of virions occurred not only within the phloem cells as it has been previously reported.  相似文献   

12.
The complexity of tospovirus–vector–host plant interaction is linked to a range of factors influencing vector's efficacy in virus transmission, leading to high variability in the transmission efficiency within vector populations. Main shortcomings of most studies are the missing information on the intrinsic potential of individual insects to serve as efficient vectors, both at phenotypic and at genotypic levels. Moreover, detailed analysis of vector competence heredity and monitoring the splitting of both genotypes and phenotypes in filial generations has not been reported. In this study, using the model system Frankliniella occidentalis and Tomato spotted wilt virus, we evaluated the inheritance and stability of the trait vector competence in a population through basic crossings of individually characterized partners, as well as virgin reproduction. We hypothesized that the trait is heritable in F. occidentalis and is controlled by a recessive allele. From the results, 83% and 94% of competent and noncompetent males respectively, inherited their status from their mothers. The trait was only expressed when females were homozygous for the corresponding allele. Furthermore, the allele frequencies were different between males and females, and the competent allele had the highest frequency in the population. These suggest that the trait vector competence is inherited in single recessive gene in F. occidentalis, for which the phenotype is determined by the haplodiploid mechanism. These findings are fundamental for our understanding of the temporal and spatial variability within vector populations with respect to the trait vector competence and at the same time offer an essential basis for further molecular studies.  相似文献   

13.
The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1; formerly the “B” biotype) than Mediterranean (MED; formerly the “Q” biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1‐infested cabbage compared with MED‐infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase (rm), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH‐glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME‐glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS‐related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.  相似文献   

14.
The MEAM1 and MED species of the cryptic species complex Bemisia tabaci are important invasive pests that cause tremendous crop losses worldwide. A rapid and highly reliable molecular technique is necessary to identify these species because they are morphologically indistinguishable. Therefore, a multiple polymerase chain reaction coupled with a ligase detection reaction (PCR‐LDR) that was based on polymorphisms in the mitochondrial cytochrome oxidase I (mtCOI) gene of B. tabaci was developed to distinguish the two cryptic species. An assessment of the method indicated that PCR‐LDR provided high specificity and sensitivity in discriminating MEAM1 (SHB) and MED (SHQ) whiteflies. In field tests, PCR‐LDR genotyping was performed in one 96‐well plate to identify 93 individuals collected from 8 districts in the suburbs of Shanghai. Complete concordance was observed between PCR‐LDR and sequencing methods. The method was used to confirm that MEAM1 and MED were found in two districts, but only the MED was found in the other six districts. PCR‐LDR, which is a transplantable platform, provides an alternative method for species identification of B. tabaci at low cost.  相似文献   

15.
In this study, species complex of Turkish Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations was determined by PCR‐based DNA analysis. According to phylogenetic analyses, the B. tabaci samples have been identified within three generic groups. A major part of the samples belonged to two invasive species, either Middle East–Asia Minor 1 (MEAM1) or Mediterranean (MED). In addition to these two invasive species, several samples collected from greenhouses and cotton fields have been found to be related to Middle East–Asia Minor 2 (MEAM2), which is the first record of Turkish B. tabaci species complex.  相似文献   

16.
The whitefly Bemisia tabaci cryptic species complex contains some important agricultural pest and virus vectors. Members of the complex have become serious pests in South Africa (SA) because of their feeding habit and their ability to transmit begomovirus species. Despite their economic importance, studies on the biology and distribution of B. tabaci in SA are limited. To this end, a survey was made to investigate the diversity and distribution of B. tabaci cryptic species in eight geographical locations (provinces) in SA, between 2002 and 2009, using the mitochondrial cytochrome oxidase I (mtCOI) sequences. Phylogenetic analysis revealed the presence of members from two endemic sub‐Saharan Africa (SSAF) subclades coexisting with two introduced putative species. The SSAF‐1 subclade includes cassava host‐adapted B. tabaci populations, whereas the whiteflies collected from cassava and non‐cassava hosts formed a distinct subclade, referred to as SSAF‐5, and represent a new subclade among previously recognized southern Africa clades. Two introduced cryptic species, belonging to the Mediterranean and Middle East–Asia minor 1 clades, were identified and include the B and Q types. The B type showed the widest distribution, being present in five of the eight provinces explored in SA, infesting several host plants and predominating over the indigenous haplotypes. This is the first report of the occurrence of the exotic Q type in SA alongside the more widely distributed B type. Furthermore, mtCOI PCR‐RFLP was developed for the SA context to allow rapid discrimination between the B, Q and SSAF putative species. The capacity to manage pests and disease effectively relies on knowledge of the identity of the agents causing the damage. Therefore, this study contributes to the understanding of South African B. tabaci species diversity, information needed for the development of knowledge‐based disease management practices.  相似文献   

17.
Cassava brown streak disease (CBSD) is arguably the most dangerous current threat to cassava, which is Africa's most important food security crop. CBSD is caused by two RNA viruses: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The roles of the whitefly Bemisia tabaci (Gennadius) and farmer practices in the spread of CBSD were investigated in a set of field and laboratory experiments. The virus was acquired and transmitted by B. tabaci within a short time (5–10 min each for virus acquisition and inoculation), and was retained for up to 48 hr. Highest virus transmission (60%) was achieved using 20–25 suspected viruliferous whiteflies per plant that were given acquisition and inoculation periods of 24 and 48 hr, respectively. Experiments mimicking the agronomic practices of cassava leaf picking or the use of contaminated tools for making cassava stem cuttings did not show the transmission of CBSV or UCBSV. Screenhouse and field experiments in Tanzania showed that the spread of CBSD next to spreader rows was high, and that the rate of spread decreased with increasing distance from the source of inoculum. The disease spread in the field up to a maximum of 17 m in a cropping season. These results collectively confirm that CBSV and UCBSV are transmitted by B. tabaci semipersistently, but for only short distances in the field. This implies that spread over longer distances is due to movements of infected stem cuttings used for planting material. These findings have important implications for developing appropriate management strategies for CBSD.  相似文献   

18.
【背景】番茄黄化曲叶病毒(TYLCV)是由媒介昆虫烟粉虱传播的一种双生病毒,对蔬菜及烟草等经济作物造成严重危害。前人资料表明,该病毒于2006年传人我国南方地区,2007年传人山东省,2008年后在山东各地逐渐蔓延扩散。【方法】为了考证TYLcV传人山东省的时间,本研究利用mtCOI基因对于2005和2006年7—8月份在山东省不同地区作物上共采集的15份烟粉虱样品进行了生物型鉴定,并进一步检测了烟粉虱携带TYLCV情况,同时对PCR扩增产物进行了测序分析。【结果】2005年的4份样品烟粉虱生物型均为B型,均不携带TYLCV。2006年的11份烟粉虱样品为B型与Q型混合样品,其中,2份烟粉虱样品检测到TYLCV,进一步证实该病毒为TYLCV。【结论与意义】本研究首次证实了TYLCV早在2006年就已经传入山东省。研究结果不仅对于防控该病毒具有重要指导意义,而且对于其入侵生物学研究也具有重要参考价值。  相似文献   

19.
The key regions in Panama involved in open field‐ and greenhouse‐grown commercial tomato production, including the Chiriquí, Veraguas, Herrera, Los Santos, Coclé and Panama Oeste provinces, were surveyed for the incidence and distribution of begomoviruses in the growing seasons of 2011 and 2012. The surveys took place in 14 of the 51 districts of the above‐mentioned provinces and comprised all relevant tomato production areas of the provinces. A total of 28 tomato plots were surveyed. The exact location of each plot was geo‐referenced using a hand‐held Global Positioning System unit. In total, 319 individual tomato plants (181 in 2011 and 138 in 2012) were sampled. Plants displayed diverse combinations of virus‐like symptoms of different severity, including necrosis, yellowing, mosaic, mottling, rolling, curling, distortion and puckering of leaves, reduced leaf size, and stunted growth. DNA was extracted from each plant for a subsequent polymerase chain reaction (PCR) analysis, using two sets of degenerate primers able to detect members of the genus Begomovirus. The samples displaying a positive reaction were subsequently analysed with specific primer pairs to identify the affecting begomoviruses. A total of 42.3% of all collected samples showed a positive signal to PCRs. Three begomovirus species were detected with the species‐specific set of primers; in particular, in the samples obtained in 2011, Potato yellow mosaic Panama virus (PYMPV), Tomato leaf curl Sinaloa virus (ToLCSiV) and Tomato yellow mottle virus (TYMoV) were detected, while in the 2012 samples, only PYMPV and ToLCSiV were found. To our knowledge, this is the first reported incidence of ToLCSiV and TYMoV in Panamanian tomato crops.  相似文献   

20.
为明确番茄褪绿病毒(ToCV)对其传毒介体烟粉虱Bemisia tabaci主要生物学特性的影响,本文研究了携带ToCV的Q型烟粉虱在非病毒寄主植物棉花Gossypium spp上的生物学指标,并测定了带毒和无毒烟粉虱主要保护酶和解毒酶活性.结果 表明,在棉花植株上,带毒烟粉虱在发育历期、产卵量、成虫寿命方面与无毒烟粉虱无显著差异,但雌虫体长明显短于无毒烟粉虱.相对于无毒烟粉虱,带毒烟粉虱体内过氧化氢酶(catalase,CAT)活性明显提高,是无毒烟粉虱的3.36倍(P <0.001),超氧化物歧化酶(superoxide dismutase,SOD)和过氧化物酶(peroxidase,POD)活性无显著差异.解毒酶中,带毒烟粉虱羧酸酯酶(carboxylesterase,CarE)活性明显下降,是无毒烟粉虱活性的54%,谷胱甘肽S转移酶(glutathione-s-transferase,GST)和乙酰胆碱酯酶(acetylcholin esterase,ACHE)活性无显著差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号