首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), poses a new threat to soybean, Glycine max (L.) Merrill (Fabaceae), production in the north central USA. As H. halys continues to spread and increase in abundance in the region, the interaction between H. halys and management tactics deployed for other pests must be determined. Currently, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most abundant and damaging insect pest of soybean in the region. Aphid‐resistant soybean, mainly with the Rag1 gene, is commercially available for management of A. glycines. Here, experiments were performed to evaluate the effects of Rag1 aphid‐resistant soybean on the mortality, development, and preference of H. halys. In a no‐choice test, mortality of H. halys reared on Rag1 aphid‐resistant soybean pods was significantly lower than when reared on aphid‐susceptible soybean pods (28 vs. 53%). Development time, adult weight, and proportion females of surviving adults did not differ when reared on Rag1 aphid‐resistant or aphid‐susceptible soybean pods. In choice tests, H. halys exhibited a preference for Rag1 aphid‐resistant over aphid‐susceptible soybean pods after 4 h, but not after 24 h. Halyomorpha halys exhibited no preference when tested with vegetative‐stage or reproductive‐stage soybean plants. The preference by H. halys for Rag1 aphid‐resistant soybean pods and the decreased mortality when reared on these pods suggests that the use of Rag1 aphid‐resistant soybean may favor this emerging pest in the north central USA.  相似文献   

2.
The oriental beetle, Anomala orientalis (Waterhouse) (Col., Scarabaeidae), is the most important root‐feeding pest of blueberries and turfgrass in New Jersey, USA. Previous studies showed that mating disruption is a feasible option for oriental beetle management; however, assessing its efficiency can be challenging, and little is known on its long‐term effects. Accordingly, we conducted studies to investigate low‐dose pheromone lures equivalent to oriental beetle females (i.e. female mimics) as easy‐to‐use indicators of mating disruption success, determine the distance at which oriental beetle males respond to female‐mimic lures and assess the long‐term (3‐year) effects of mating disruption on oriental beetle populations in entire blueberry fields. Our studies showed that rubber septa baited with 0.3 μg of the oriental beetle sex pheromone (Z)‐7‐tetradecen‐2‐one attract similar numbers of males as compared with virgin females and can thus be used as a female mimic. The range of attraction of this lure was found to be also similar to virgin females and <30 m. In blueberries, mating disruption provided 87% inhibition of oriental beetle populations (trap shutdown) over a 3‐year period. Oriental beetle male captures in disrupted fields were threefold higher along the field edges than in the field interiors, indicating movement of males from nearby areas into the pheromone‐treated fields. In addition, mating disruption reduced male attraction to female‐mimic lures by 93% in all 3 years and reduced the number of larvae in sentinel potted plants in 1 of 2 years. These results show for the first time that mating disruption provides consistent long‐term field‐wide control of oriental beetle populations and that female‐mimic pheromone lures can be used as a new tool to assess oriental beetle mating disruption success.  相似文献   

3.
Melon fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae), is an important quarantine tephritid fruit fly with resident populations established in Hawai'i, USA. In the male‐annihilation approach, male flies are targeted using dispensers with cue‐lure (C‐L) and insecticides, typically organophosphates. The efficacy of the male annihilation approach is thought to be limited to individual male flies, contacting the lure and the pesticide, after which they die. Alternative classes of insecticides, such as fipronil, have been investigated for use in male‐annihilation. We hypothesized that ingestion of fipronil by male flies could lead to horizontal transfer and mortality in female flies. Horizontal insecticide transfer extends pesticide control beyond the individual contacting the toxicant through indirect contact via food sharing or other mechanisms. We tested the possibility for horizontal transfer of fipronil from male to female Z. cucurbitae through field and laboratory studies. Two repeated field trials were conducted to compare the numbers of female flies collected in fields treated with Amulet C‐L (0.34% fipronil active ingredient) bait stations, sanitation, and spot treatments of GF‐120 Fruit Fly Bait to numbers collected in fields where sanitation and spot‐treatments were used without Amulet C‐L. In fields with Amulet C‐L bait stations in conjunction with sanitation and weekly protein bait spot treatments of GF‐120 Fruit Fly Bait, female captures were significantly lower than those in field plots treated with weekly protein bait spot treatments and sanitation. In subsequent laboratory studies, all females died within 6 h after direct exposure to male flies that had access to Amulet C‐L for 1–4 min. The possibility that male regurgitant could be a mechanism for horizontal transfer and subsequent female mortality was determined by collecting regurgitated droplets from fipronil‐fed male flies and feeding them to males and females. Both male and female flies exposed to regurgitant from fipronil‐fed male flies or droplets containing fipronil had higher mortality than the male and female flies that were exposed to regurgitant or droplets with only the C‐L compound or sugar solution. Thus, female flies do experience mortality from exposure to regurgitant from males that have fed on fipronil laced solutions. This provides evidence of at least one mechanism of horizontal transfer of insecticide in tephritid fruit flies. These findings are discussed in the context of Zcucurbitae integrated pest management programs in Hawai'i.  相似文献   

4.
Seasonal polyphenism in Drosophila suzukii manifests itself in two discrete adult morphotypes, the “winter morph” (WM) and the “summer morph” (SM). These morphotypes are known to differ in thermal stress tolerance, and they co‐occur during parts of the year. In this study, we aimed to estimate morph‐specific survival and fecundity in laboratory settings simulating field conditions. We specifically analyzed how WM and SM D. suzukii differed in mortality and reproduction during and after a period of cold exposure resembling winter and spring conditions in temperate climates. The median lifespan of D. suzukii varied around 5 months for the WM flies and around 7 months for the SM flies. WM flies showed higher survival during the cold‐exposure period compared with SM flies, and especially SM males suffered high mortality under these conditions. In contrast, SM flies had lower mortality rates than WM flies under spring‐like conditions. Intriguingly, reproductive status (virgin or mated) did not impact the fly survival, either during the cold exposure or during spring‐like conditions. Even though the reproductive potential of WM flies was greatly reduced compared with SM flies, both WM and SM females that had mated before the cold exposure were able to continuously produce viable offspring for 5 months under spring‐like conditions. Finally, the fertility of the overwintered WM males was almost zero, while the surviving SM males did not suffer reduced fertility. Combined with other studies on D. suzukii monitoring and overwintering behavior, these results suggest that overwintered flies of both morphotypes could live long enough to infest the first commercial crops of the season. The high mortality of SM males and the low fertility of WM males after prolonged cold exposure also highlight the necessity for females to store sperm over winter to be able to start reproducing early in the following spring.  相似文献   

5.
The Asian multicoloured ladybird beetle, Harmonia axyridis, is utilized as a major natural enemy of aphids in the field, greenhouses and orchards. However, it has been looked as invasive predator distributing in worldwide. To refine integrated pest management (IPM) against aphids, it is important to evaluate the effects of insecticides on physiology and behaviour of the high adapted predators. Beta‐cypermethrin, a broad‐spectrum insecticide, not only kills aphids at lethal concentrations but also affects natural enemy of aphids. In our study, the age‐stage, two‐sex life table was used to evaluating sublethal effects of beta‐cypermethrin on the predatory ladybird beetle H. axyridis. In the parent generation, the pre‐oviposition period of H. axyridis was significantly shortened (8.93 days) after exposure to LC5 beta‐cypermethrin (5% lethal concentration) as compared with control (10.06 days). However, the oviposition period was significantly longer (46.17 days instead of 43.90 days), and fecundity (eggs per female) was significantly increased by 49.64% when compared with control. In the F1 generation, the length of the juvenile stage was not affected, but the oviposition period increased significantly (38.19 days compared to 31.39 days in the control). This positive effect was translated to the fecundity that increased significantly by 62.27% as compared with control. According to the life‐table analysis, the intrinsic rate of increase (rm) was significantly higher in treatment (0.140 per day) than that in the control (0.123 per day). In addition, the net reproductive rate (R0) increased significantly by 91.53%. These results would be useful in assessing the overall effects of beta‐cypermethrin on H. axyridis and even for discussing the ecological mechanism of the unexpected extension of H. axyridis during IPM programme.  相似文献   

6.
Polyandry is ubiquitous in insects and provides the conditions necessary for male‐ and female‐driven forms of post‐copulatory sexual selection to arise. Populations of Amphiacusta sanctaecrucis exhibit significant divergence in portions of the male genitalia that are inserted directly into the female reproductive tract, suggesting that males may exercise some post‐copulatory control over fertilization success. We examine the potential for male–male and male–female post‐copulatory interactions to influence paternity in wild‐caught females of A. sanctaecrucis and contrast our findings with those obtained from females reared in a high‐density laboratory environment. We find that female A. sanctaecrucis exercise control by mating multiple times (females mount males), but that male–male post‐copulatory interactions may influence paternity success. Moreover, post‐copulatory interactions that affect reproductive success of males are not independent of mating environment: clutches of wild‐caught females exhibit higher sire diversity and lower paternity skew than clutches of laboratory‐reared females. There was no strong evidence for last male precedence in either case. Most attempts at disentangling the contributions of male–male and male–female interactions towards post‐copulatory sexual selection have been undertaken in a laboratory setting and may not capture the full context in which they take place – such as the relationship between premating and post‐mating interactions. Our results reinforce the importance of designing studies that can capture the multifaceted nature of sexual selection for elucidating the role of post‐copulatory sexual selection in driving the evolution of male and female reproductive traits, especially when different components (e.g. precopulatory and post‐copulatory interactions) do not exert independent effects on reproductive outcomes.  相似文献   

7.
Bt cotton (Cry1Ac) has been commercially grown in China since 1997, saving China's cotton production from attack by Bt‐target pests and also tremendously reducing pesticide usage. In recent years, however, Bt cotton, with 4.2 million ha of cultivation, has suffered from a secondary target pest, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). In China, growers have even had to re‐adopt conventional pesticides to control the pest, and this practice has already caused serious pesticide residue. In order to clarify the sublethal effects of chemical pesticide, the responses of a Bt‐susceptible and a Bt‐tolerant (Bt10) S. exigua strain to three treatment combinations were examined, including Bt toxin, sublethal chlorpyrifos, and Bt + sublethal chlorpyrifos. The susceptible and the Bt10 strain responded differently to dual pressure. Bt toxin + sublethal chlorpyrifos treatment lowered larval mortality and stimulated population increase of the susceptible S. exigua, whereas it delayed growth and development of the Bt10 strain. Under dual pressure, although larvae of the Bt10 strain developed faster than larvae of the susceptible strain, the Bt10 population experienced higher larval mortality, prolonged pupal duration, decreased pupal weight, decreased emergence rate, and shortened adult longevity. Compared with the susceptible strain, the Bt10 strain was deleteriously affected by sublethal chlorpyrifos. The Bt‐tolerant/resistant S. exigua population was more vulnerable to chemical pesticides like chlorpyrifos regardless of whether it was exposed to Bt toxin or not. Our study provides a reference for increasing the efficacy of control of S. exigua in Bt‐cotton planting areas.  相似文献   

8.
The invasive Halyomorpha halys (Heteroptera: Pentatomidae) is a key pest of fruits in the Emilia‐Romagna region of Italy. For the development of a sustainable management programme, knowledge of its native natural enemy community and its efficacy is essential. A three‐year field survey was conducted exposing H. halys egg masses in different types of habitats to investigate the efficacy of native natural enemies in reducing the H. halys populations in the Emilia‐Romagna region, where the stinkbug was first detected in 2012. Over the first year of the study, sentinel eggs from laboratory cultures were stapled to the underside of leaves in various host trees, whereas in following years H. halys adults were directly caged on branches in sleeve cages to allow natural oviposition. Over the examined years, low rates of parasitism (1%–3%) and predation (2%–5%) were observed. Parasitism was caused exclusively by the generalist parasitoid Anastatus bifasciatus.  相似文献   

9.
10.
Larvae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) that survive on genetically modified Bt cotton (Gossypium hirsutum L., Malvaceae) contribute to the risk of widespread resistance to Bt toxins. Current resistance management techniques include pupae busting, which involves deep tilling of the soil to kill overwintering pupae. Unfortunately, pupae busting runs counter to soil and water conserving techniques, such as minimum tillage. This problem could be relieved with biological control methods, whereby predators attack either larvae going to ground to pupate or moths emerging from the ground. We found that the wolf spider Tasmanicosa leuckartii (Thorell) (Araneae: Lycosidae), a common inhabitant of Australian cotton agroecosystems, is an effective predator of H. armigera, attacking and killing most larvae (66%) and emerging moths (77%) in simple laboratory arenas. Tasmanicosa leuckartii also reduced the number of emerging moths by 66% on average in more structurally complex glasshouse arenas. Males, females, and late‐instar juveniles of T. leuckartii were similarly effective. Tasmanicosa leuckartii also imposed non‐consumptive effects on H. armigera, as when a spider was present larvae in the laboratory areas spent less time on the cotton boll and more time on the soil and more mass was lost from the cotton boll. Increased loss of boll mass likely reflects changes in H. armigera foraging behavior induced by the presence of spiders (indirect non‐consumptive effects). Helicoverpa armigera spent more time as pupae when the spider was present in simple laboratory arenas, but not in more complex glasshouse enclosures. Overall, results indicate that T. leuckartii spiders can be effective predators of H. armigera late instars and moths but also suggest that, under some conditions, the presence of spiders could increase the damage to individual cotton bolls.  相似文献   

11.
The brown marmorated stink bug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is an invasive pest that attacks specialty and row crops in North America and Europe. There has been a concerted effort to reduce frequent broad-spectrum insecticide applications made on vulnerable crops. One tool that has emerged recently is the use of long-lasting insecticide-treated nets (LLINs) as a killing agent. Here, we conducted bioassays to evaluate the effect of direct contact on deltamethrin-impregnated LLINs on the behaviour and survivorship of H. halys nymphs and adults in the laboratory. Following exposure at three different durations (1.25, 4.25 or 7.25 min), vertical and horizontal mobility of adults and nymphs and the flight capacity of adults were recorded and compared with individuals that were not exposed (control). Exposure to LLINs reduced the horizontal distance and velocity and increased the angular velocity of adults only but reduced vertical mobility of adults and nymphs. Adult flights were not significantly affected by LLIN exposure. Mortality of adults and nymphs at 7-day post-exposure ranged from 73% to 77% regardless of exposure time. We discuss our findings within the context of the potential for and limitations of deploying LLINs in vulnerable crops to manage H. halys populations.  相似文献   

12.
Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the primary vector of Candidatus Liberibacter spp. bacteria that cause citrus greening, a disease of worldwide importance. Olfactometry was employed to test responses of D. citri to odours from intact citrus plants (Mexican lime, Citrus aurantifolia, sour orange, Citrus aurantium, Marsh grapefruit, Citrus paradisi and Valencia orange, Citrus sinensis), citrus plants previously infested with D. citri, and odours of conspecifics including nymphs, adult insects of same and opposite sex, and their products (honeydew), both alone and in combination. In contrast to other studies, psyllids of both sexes were attracted to volatiles of undamaged Mexican lime leaves, whereas undamaged grapefruit attracted only females, and leaves of Valencia and sour orange did not attract either sex. All four plant species attracted female psyllids when previously infested, but only Mexican lime and sour orange‐attracted males. Thus, Citrus species appear to vary in the production of both constituitive and induced volatiles that attract adult psyllids. Volatiles emitted by nymphs did not attract either sex, but psyllid honeydew was attractive to males, likely due to female pheromone residues. Males oriented to the odour of females, whereas the reverse was not true, and neither males nor females oriented to same‐sex volatiles. The addition of conspecific cues (adults, nymphs or honeydew) did not increase female attraction to previously infested leaves, but male response was increased by the presence of adults and honeydew, regardless of plant species. Thus, female psyllids appear to orient more strongly to volatiles of plant origin, whereas males respond more strongly to cues emanating from females and conspecific excretions. These results suggest that female psyllids drive the initial colonization of host plants, whereas males orient to females and infested plants. Identification of the specific volatiles involved may permit their use in monitoring and management of this pest.  相似文献   

13.
Animal communication is a complex behavior that is influenced by abiotic and biotic factors of the environment. Glassy‐winged sharpshooters (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), primarily use vibrational signaling for courtship communication. Because GWSS is a major pest, transmitting the plant pathogenic bacterium Xylella fastidiosa Wells et al., interruption of communication is a possible avenue for control. Playback of white noise, pre‐recorded female signals, and artificial female noise (continuously overlapping female signals) significantly reduced mating of GWSS when compared to silent control mating trials. Furthermore, to begin to determine the mechanism underlying playback control, female signaling activity was recorded in the presence of stimuli. In response to playback of female signals, females signaled (duet‐like) more often than females tested in the absence of playback. After the first playback, almost two‐thirds of females signaled a response within 3 s. Additionally, one‐third of the females signaled within 1 s after cessation of white noise, and significantly more in the time periods following noise termination. Results highlight how GWSS responds to differing competitive disturbances in the environment and lays important ground work that possibly could be used to develop pesticide‐free control methods.  相似文献   

14.
The interest in and utilization of botanical insecticides, particularly essential oils, has become increasingly relevant to the control of insect pests. However, the potential ecotoxicological risks or flaws (including sublethal effects on the targeted pest generation and its subsequent progeny) of this pest control tool have been neglected frequently. Here, we evaluated the effects of sublethal exposure to clove, Syzygium aromaticum (L.) Merrill & Perry (Myrtaceae), and cinnamon, Cinnamomum verum J. Presl (Lauraceae), essential oils on adult (F0) maize weevils, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), and the physiology (e.g., body mass, respirometry, and grain consumption) and population dynamics (e.g., daily emergence and sex ratio) of their progeny. Longevities of the parents were negatively affected by the essential oils in a concentration‐dependent manner. Parental sublethal exposure to clove oil (0.17 μl cm?2) accelerated offspring emergence but delayed the emergence of females compared to males. Parents that were sublethally exposed to clove (0.17 μl cm?2) or cinnamon (0.35 μl cm?2) essential oils produced heavier offspring. Parental sublethal exposure to cinnamon essential oil accelerated offspring emergence (at 0.70 μl cm?2), delayed female emergence (at 0.17 μl cm?2), and enhanced grain consumption (at 0.35 and 0.70 μl cm?2) of the progeny. Thus, our findings indicate that sublethal exposure to clove and cinnamon essential oils is capable of promoting transgenerational effects in S. zeamais that can negatively impact the control efficacy of such products.  相似文献   

15.
Globally, Anastatus species (Hymenoptera: Eupelmidae) are associated with the invasive agricultural pest Halyomorpha halys (Stål) (Hemiptera: Pentatomidae). In Europe, the polyphagous Anastatus bifasciatus (Geoffroy) is the most prevalent native egg parasitoid on H. halys eggs and is currently being tested as a candidate for augmentative biological control. Anastatus bifasciatus frequently displays behavior without oviposition, and induces additional host mortality through oviposition damage and host feeding that is not measured with offspring emergence. This exacerbates accurate assessment of parasitism and host impact, which is crucial for efficacy evaluation as well as for pre‐ and post‐release risk assessment. To address this, a general Anastatus primer set amplifying a 318‐bp fragment within the barcoding region of the cytochrome oxidase I (COI) gene was developed. When challenged with DNA of three Anastatus species —A. bifasciatus, Anastatus japonicus Ashmead, and Anastatus sp.—, five scelionid parasitoid species that might be encountered in the same host environments and 11 pentatomid host species, only Anastatus DNA was successfully amplified. When applied to eggs of the target host, H. halys, and an exemplary non‐target host, Dendrolimus pini L. (Lepidoptera: Lasiocampidae), subjected to host feeding, no Anastatus amplicons were produced. Eggs of the two host species containing A. bifasciatus parasitoid stages, from 1‐h‐old eggs to pupae, and emerged eggs yielded Anastatus fragments. Confirmation of parasitoid presence with dissections and subsequent PCRs with the developed primer pair resulted in 95% success for 1‐h‐old parasitoid eggs. For both host species, field‐exposed sentinel emerged eggs stored dry for 6 months, 100% of the specimens produced Anastatus amplicons. This DNA‐based screening method can be used in combination with conventional methods to better interpret host‐parasitoid and parasitoid‐parasitoid interactions. It will help address ecological questions related to an environmentally friendly approach for the control of H. halys in invaded areas.  相似文献   

16.
Even as new substances show promise as biopesticides for controlling pests due to their natural properties and high effectiveness in inhibiting pests, their side effects on non‐target organisms must nevertheless be evaluated before they can be included into integrated pest management systems. In this study, a crude extract from dried leaves of Embelia ribes was evaluated together with two commercial pesticides: azadirachtin (a natural product) and amitraz (a synthetic acaricide). We examined both lethal and sublethal effects on the predatory potential of the lynx spider Oxyopes lineatipes, which is among the most dominant predator in tropical agricultural agroecosystems. We found that the spider's mortality increased with rising concentration of both commercial products, azadirachtin and amitraz, but not with rising concentration of the extracts from E. ribes. The greatest mortality occurred when amitraz was used. That material caused almost 100% spider mortality in the doses recommended for field spraying. Azadirachtin significantly reduced the rate at which O. lineatipes captured prey, while there was no significant difference in capture rates among spiders exposed to a control treatment and the E. ribes treatment. Considering its absence of unfavourable impacts on O. lineatipes in terms of mortality and predatory activity, the plant extract from E. ribes shows promise as a new biopesticide material. In contrast, azadirachtin, which has been considered as safe for non‐target organisms, exhibited slight lethal effect only in higher concentrations and strong sublethal effect by reducing spiders’ predation rate.  相似文献   

17.
Longevity is an important life‐history trait for successful and cost‐effective application of the sterile insect technique. Furthermore, it has been shown that females of some species – e.g., Anastrepha ludens (Loew) (Diptera: Tephritidae) – preferentially copulate with ‘old’, sexually experienced males, rather than younger and inexperienced males. Long‐lived sterile males may therefore have greater opportunity to find and mate with wild females than short‐lived males, and be more effective in inducing sterility into wild populations. We explored the feasibility of increasing sterile male lifespan through selection of long‐lived strains and provision of pre‐release diets with added protein, and inoculated with bacterial symbionts recovered from cultures of the gut of wild Anastrepha obliqua (Macquart). Artificial selection for long‐lived A. ludens resulted in a sharp drop of fecundity levels for F1 females. Nevertheless, the cross of long‐lived males with laboratory females produced a female F1 progeny with fecundity levels comparable to those of females in the established colony. However, the male progeny of long‐lived males*laboratory females did not survive in higher proportions than laboratory males. Provision of sugar to A. obliqua adults resulted in increased survival in comparison to adults provided only with water, whereas the addition of protein to sugar‐only diets had no additional effect on longevity. Non‐irradiated males lived longer than irradiated males, and supplying a generic probiotic diet produced no noticeable effect in restoring irradiated male longevity of A. obliqua. We discuss the need to evaluate the time to reach sexual maturity and survival under stress for long‐lived strains, and the inclusion of low amounts of protein and specific beneficial bacteria in pre‐release diets to increase sterile male performance and longevity in the field.  相似文献   

18.
Damaging effects of UVB in conjunction with other stressors associated with global change are well‐established, with many studies focused on vulnerable early life stages and immediate effects (e.g., mortality, developmental abnormalities). However, for organisms with complex life cycles, experiences at one life stage can have carry‐over effects on later life stages, such that sublethal effects may mediate later vulnerability to further stress. Here, we exposed embryos in benthic egg masses of the New Zealand intertidal gastropod Siphonaria australis to treatments of either periodic stress (e.g., elevated UVB, salinity, and water temperature mimicking tidepool conditions in which egg masses are commonly found during summer) or control conditions (low UVB, ambient salinity, and water temperatures). Although there was high mortality from stressed egg masses, 24% of larvae hatched successfully. We then exposed the hatching larvae from both egg mass treatments to different combinations of water temperature (15 or 20 °C) and light (high UVB or shade) 12 h per day for 10 days. The most stressful larval conditions of 20 °C/high UVB resulted in low survival and stunted growth. Carry‐over effects on survival were apparent for shaded larvae exposed to elevated temperature, where those from stressed egg masses had 1.8× higher mortality than those from control egg masses. Shaded larvae were also larger and had longer velar cilia if they were from control egg masses, independent of larval temperature. These results demonstrate that previous experience of environmental stress can influence vulnerability of later life stages to further stress, and that focus on a single life stage will underestimate cumulative effects of agents of global change.  相似文献   

19.
The hydrosols are by‐products derived during the extraction of essential oils. Although essential oils have been widely evaluated for their insecticidal activities, the possible use of hydrosols in pest control has been almost unknown. The effects of the hydrosols of Origanum majorana (marjoram), Mentha pulegium (pennyroyal), and Melissa officinalis (lemon balm) on the survival and settling behaviour of the aphid pest Myzus persicae were investigated. The hydrosols were isolated using Clevenger hydrodistillation (i) with conventional heating (HD) and (ii) assisted by microwaves (MWHD). GC‐MS analysis showed that the volatiles occurring in the hydrosols were similar between the two techniques. Hydrosols were assayed for possible settling inhibitory effects on M. persicae in Petri dishes (15 cm diameter). In each dish, a sprayed together with an unsprayed eggplant leaf piece was placed. An adult aphid <24 h old was released on the treated leaf and its path length was recorded during the initial 10 min. Then, its position (on the treated or untreated leaf) was recorded 10, 20, 30, 60 min and 24 h after spraying. M. officinalis HD hydrosol resulted in fourfold increase of the path length compared with the control (deionized water). The last observation (24 h) revealed that M. officinalis and M. pulegium HD hydrosols had the strongest inhibitory effect. Additionally, O. majorana hydrosols caused 10–15% aphid mortality after 24 h. In this study, the wider use of the MWHD technique is further supported as in addition to its well‐known advantages (i.e. shorter distillation time, less energy consumption), the effects of the hydrosols produced are comparable to those obtained by HD. Most importantly, the results clearly showed that the potential of hydrosols in pest control ought not to be ignored and should attract the interest of future studies.  相似文献   

20.
Essential oils of aromatic plants and their individual volatile components have been tested in pest management strategies for their toxic and often repellent effects on target insects. When evaluating their possible effects on crucial behaviours of the pest insects, the olfactory environment including intraspecific communication cues has to be considered. We used the flour beetle Tribolium confusum du Val (Coleoptera: Tenebrionidae), a common stored‐product pest, to investigate the influence of oil of spike lavender, Lavandula spica Medik. (Labiaceae), and its main component, linalool, at various doses on olfactory‐guided behaviour. Using four‐way olfactometers, a dose‐dependent repellent effect of L. spica oil and linalool alone was revealed. On the other hand, we confirmed that T. confusum is attracted by conspecifics, by means of an aggregation pheromone and by 10 ng of one of its components, 1‐tetradecene. Twenty‐four hour pre‐exposure to 10 μl of L. spica oil abolished subsequent attraction to 1‐tetradecene and reduced attraction to five conspecifics. Simultaneous exposure to L. spica oil or linalool and five conspecifics reduced the repellent effect of the volatiles in a dose‐dependent manner, whereas simultaneous exposure to 1‐tetradecene at 10 ng abolished the repellent effect of L. spica oil only at a dose of 0.01 mg. These results indicate a dose‐dependent trade‐off between attractive and plant‐derived repellent volatiles, which may influence the effectiveness of such volatiles in their potential use in alternative pest management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号