首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The full‐length complementary DNA of two genes related to vertebrate albinism, the tyrosinase gene tyr and tyrosinase‐related protein 1 gene tyrp1, were cloned and analysed from normal and albino yellow catfish Tachysurus fulvidraco. The open reading frames (ORF) of tyr and tyrp1 encode putative peptides of 533 and 526 amino acids (amino‐acid), both of which possess two conserved copper binding sites. The homologous identities of deduced amino‐acid sequences showed that both Tyr and Tyrp1 of T. fulvidraco share considerable similarity with that of channel catfish Ictalurus punctatus. Both tyr and tyrp1 were expressed in a wide range of adult tissues. Tyr gene had the highest expression level in the brain of both normal and albino T. fulvidraco. Tyrp1 had the highest expression level in the skin of normal groups, and the fin of albino groups. The messenger (m)RNA expressions of tyr and tyrp1 were detectable at different early developmental stages and varied with embryonic and larval growth. Tyr and tyrp1 mRNA have obvious tissue specificity both in normal and albino T. fulvidraco and higher expression levels were detected in the normal group revealing that tyr and tyrp1 may have an important role in pigmentation. These results will provide useful data for understanding the molecular mechanism of melanin formation and the occurrence of albinism in T. fulvidraco.  相似文献   

2.
Acetylcholinesterase (AChE) activity is a well‐known biomarker for exposure to organophosphate or carbamate compounds in aquatic organisms. However, the effect of dibutyl phthalate (DBP) and di‐ethylhexyl phthalate (DEHP), widely used as a plasticizer, on the change of AChE activity is not yet known. Bagrid catfish Pseudobagrus fulvidraco were administrated with 100, 500 and 1000 mg kg?1 diet of DBP or DEHP and the effects on AChE activity were assessed in the liver, gill, kidney, heart, brain, muscle and eye of the exposed fish. All tissues contained different background AChE activity in non‐treated bagrid catfish: the highest was observed in the brain, followed by muscle, heart, and kidney. The enzyme activities in various tissues were significantly inhibited after exposure to DBP or DEHP in a concentration‐dependent manner, especially in brain and muscle. A similar, but less pronounced, inhibition was also observed in liver and kidney when exposed to DBP and DEHP. Although AChE activity in gill and heart was also affected by DBP and DEHP, the decrease in these organs was least marked in these organs. Exposure to 1000 mg kg?1 led to mortalities of 8.0% with DBH and 14% with DEHP; both seemed to be ascribable to phthalate toxicity. This study is the first report that the measurement of AChE activity in bagrid catfish is a valuable biomarker of DBP and DEHP exposure. This biomarker could be incorporated into a battery of biomarkers to strengthen the confidence with which ecotoxicologists can assess the impact of phthalate ester pollution in the aquatic environment.  相似文献   

3.
This study represents the first report of a C‐type lectin (ctl) in yellow catfish Tachysurus fulvidraco. The complete sequence of ctl complementary (c)DNA consisted of 685 nucleotides. The open reading frame potentially encoded a protein of 177 amino acids with a calculated molecular mass of c.y 20.204 kDa. The deduced amino‐acid sequence contained a signal peptide and a single carbohydrate recognition domain with four cysteine residues and GlnProAsp (QPD) and TrpAsnAsp (WND) motifs. Ctl showed the highest identity (56.0%) to the predicted lactose binding lectin from channel catfish Ictalurus punctatus. Quantitative real‐time (qrt)‐PCR analysis showed that ctl messenger (m)RNA was constitutively expressed in all examined tissues in normal fish, with high expression in trunk kidney and head kidney, which was increased following Aeromonas hydrophila challenge in a duration‐dependent manner. Purified recombinant Ctl (rCtl) from Escherichia coli BL21 was able to bind and agglutinate Gram‐positive and Gram‐negative bacteria in a calcium‐dependent manner. These results suggested that Ctl might be a C‐type lectin of T. fulvidraco involved in innate immune responses as receptors (PRR).  相似文献   

4.
Toxoplasma gondii relies on apicoplast‐localised FASII pathway and endoplasmic reticulum‐associated fatty acid elongation pathway for the synthesis of fatty acids, which flow through lipid metabolism mainly in the form of long‐chain acyl‐CoA (LCACoAs) esters. Functions of Toxoplasma acyl‐CoA transporters in lipid metabolism remain unclear. Here, we investigated the roles of acyl‐CoA‐binding protein (TgACBP1) and a sterol carrier protein‐2 (TgSCP2) as cytosolic acyl‐CoA transporters in lipid metabolism. The fluormetric binding assay and yeast complementation confirmed the acyl‐CoA binding activities of TgACBP1 and TgSCP2, respectively. Disruption of either TgACBP1 or TgSCP2 caused no obviously phenotypic changes, whereas double disruption resulted in defects in intracellular growth and virulence to mice. Gas chromatography coupled with mass spectrometry (GC–MS) results showed that TgACBP1 or TgSCP2 disruption alone led to decreased abundance of C18:1, whereas double disruption resulted in reduced abundance of C18:1, C22:1, and C24:1. 13C labelling assay combined with GC–MS showed that double disruption of TgACBP1 and TgSCP2 led to reduced synthesis rates of C18:0, C22:1, and C24:1. Furthermore, high performance liquid chromatography coupled with high resolution mass spectrometry (HPLC‐HRMS) was used for lipidomic analysis of parasites and indicated that loss of TgACBP1 and TgSCP2 caused serious defects in production of glycerides and phospholipids. Collectively, TgACBP1 and TgSCP2 play synergistic roles in lipid metabolism in T. gondii.  相似文献   

5.
6.
Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2‐thiolase‐like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2‐Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T. brucei and causes a 5‐fold reduction of de novo sterol biosynthesis from glucose‐ and acetate‐derived acetyl‐CoA. Fluorescence analyses of EGFP‐tagged TbSLP expressed in the parasite located the TbSLP in the mitochondrion. The crystal structure of TbSLP (refined at 1.75 Å resolution) confirms that TbSLP has the canonical dimeric thiolase fold. In addition, the structures of the TbSLP‐acetoacetyl‐CoA (1.90 Å) and TbSLP‐malonyl‐CoA (2.30 Å) complexes reveal that the two oxyanion holes of the thiolase active site are preserved. TbSLP binds malonyl‐CoA tightly (Kd 90 µM), acetoacetyl‐CoA moderately (Kd 0.9 mM) and acetyl‐CoA and CoA very weakly. TbSLP possesses low malonyl‐CoA decarboxylase activity. Altogether, the data show that TbSLP is a mitochondrial enzyme involved in lipid metabolism. Proteins 2016; 84:1075–1096. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The effects of di(2‐ethylhexyl) phthalate (DEHP) on proteins secreted by HepG2 cells were studied using a proteomic approach. HepG2 cells were exposed to various concentrations of DEHP (0, 2.5, 5, 10, 25, 50, 100, and 250 μM) for 24 or 48 h. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) and comet assays were then conducted to determine the cytotoxicity and genotoxicity of DEHP, respectively. The MTT assay showed that 10 μM DEHP was the maximum concentration that did not cause cell death. In addition, the DNA damage in HepG2 cells exposed to DEHP was found to increase in a dose‐ and time‐dependent fashion. Proteomic analysis using two different pI ranges (4–7 and 6–9) and large size 2‐DE revealed the presence of 2776 protein spots. A total of 35 (19 up‐ and 16 down‐regulated) proteins were identified as biomarkers of DEHP by ESI‐MS/MS. Several differentiated protein groups were also found. Proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility were found to be up‐ or down‐regulated. Among these, the identities of cystatin C, Rho GDP inhibitor, retinol binding protein 4, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, cofilin‐1, and haptoglobin‐related protein were confirmed by Western blot assay. Therefore, these proteins could be used as potential biomarkers of DEHP and human disease associated with DEHP.  相似文献   

8.
9.
An understanding of how arthropods use energy is fundamental to explaining their diverse life histories and adaptation to specific environments. It is also of importance when attempting to predict the impacts of environmental change on patterns of development and phenology. Here, lipid use by the economically important agent of ovine myiasis, Lucilia sericata (Diptera: Calliphoridae), was quantified at a range of temperatures. During pupation, at temperatures above the minimum temperature required for development (9 °C), pupae depleted an average of 30% of their total lipid over the course of pupation regardless of temperature. There was no detectable loss of lipid during pupation at temperatures below 9 °C. In general, larger individuals had the same relative amounts of lipid as smaller individuals. Newly emerged adults metabolized about 16% of the lipid reserves with which they emerged in the first 24 h during flight‐related activity. Starved adults, with access to water but without sucrose or protein, depleted their lipid reserves and died within about 4 days of emergence. However, adults with access to protein and/or carbohydrate were able to maintain a stored lipid content of about 2.38% of their total body mass for at least 14 days after emergence, irrespective of sex. This finding is similar to that in field‐caught individuals, in which lipid content was found to be a mean of 3% of body mass. The data suggest that warmer environmental conditions, within the temperature limits tested here, although shortening the time required for development and altering the patterns of seasonal abundance of L. sericata, are unlikely to impact on fly survival because of greater metabolic demands during non‐feeding stages of the lifecycle.  相似文献   

10.
谢宇潇  高士争  赵素梅 《遗传》2013,35(5):595-598
细胞中脂滴(Lipid droplets, LDs)表面存在多个调控脂肪储存和分解的蛋白, 这些蛋白对机体的脂肪代谢起着很重要的调控作用。CGI-58(Comparative gene identification-58)分布在LDs表面, 属于α/β水解酶折叠家族, 是脂肪甘油三酯脂肪酶(Adipose triglyceride lipase, ATGL)和依赖酰基辅酶A溶血磷脂酸酰基转移酶(Lysophosphatidic acid acyltransferase, LPAAT)的激活剂。在脂肪分解过程中, CGI-58结合PAT蛋白家族成员之一的脂滴包被蛋白(Perlipin)和ATGL, 促进脂肪分解, 同时CGI-58对ATGL的激活功能受脂滴包被蛋白家族成员间蛋白质与蛋白质相互作用的影响。文章结合国内外研究热点, 针对CGI-58在动物脂类代谢中的作用进行了综述。  相似文献   

11.
In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl‐constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER‐to‐chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.  相似文献   

12.
13.
Di‐(2‐ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in industrial production, but may have a potential health risk. In this study, the binding characteristics of DEHP with human serum albumin (HSA) in aqueous solution at pH 7.4 were determined using UV/vis absorption, fluorescence, Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD), along with a molecular simulation technique. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by DEHP was static. The calculated thermodynamic parameters indicated that hydrophobic forces played a predominant role in formation of the DEHP–HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments and denaturation studies showed that the binding of DEHP to HSA primarily took place in subdomain IIA of HSA, and molecular docking results further corroborated the binding sites. The synchronous fluorescence, UV/vis absorption, FTIR and CD spectra revealed that the addition of DEHP induced changes in the secondary structure of HSA. Protein surface hydrophobicity (PSH) tests indicated that DEHP binding to HSA caused an increase in the PSH. Moreover, the effects of some metal ions on the binding constant of DEHP − HSA interaction were also investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The brummer (bmm) genes encode the lipid storage droplet‐associated triacylglycerols (TAG) lipases, which belong to the Brummer/Nutrin subfamily. These enzymes hydrolyze the ester bonds in TAG in lipid metabolism and act in insect energy homeostasis. Exposure to some agricultural chemicals leads to increased fecundity, which necessarily involves lipid metabolism, in some planthopper species. However, the biological roles of bmm in planthopper lipid storage and mobilization have not been investigated. Here, the open reading frame (ORF) of bmm (Nlbmm) was cloned and sequenced from the brown planthopper (BPH; Nilaparvata lugens). The ORF is 1014 bp encoding 338 amino acid residues. Nlbmm contained patatin domains and shared considerable evolutionary conservation with other insect bmms. Nlbmm is highly expressed in the fat body, consistent with its roles in lipid metabolism. Injection with Nlbmm double‐stranded RNA (dsNlbmm) led to reduced Nlbmm mRNA accumulation, but did not influence expression of several genes related to lipid synthesis including acyl‐CoA‐binding protein (ACBP), acetyl‐CoA carboxylase (ACC), and a lipophorin receptor (LpR). Nlbmm knockdown led to increased TAG contents in whole bodies, accumulation of total fat body lipid, and decreased hemolymph lipid content. Nlbmm knockdown did not influence the synthesis and distribution of glycerol. We infer that Nlbmm acts in TAG breakdown and fat metabolism in N. lugens.  相似文献   

15.
16.
The G protein‐coupled receptor (GPCR) encoding family of genes constitutes more than 6% of genes in Caenorhabditis elegans genome. GPCRs control behavior, innate immunity, chemotaxis, and food search behavior. Here, we show that C. elegans longevity is regulated by a chemosensory GPCR STR‐2, expressed in AWC and ASI amphid sensory neurons. STR‐2 function is required at temperatures of 20°C and higher on standard Escherichia coli OP50 diet. Under these conditions, this neuronal receptor also controls health span parameters and lipid droplet (LD) homeostasis in the intestine. We show that STR‐2 regulates expression of delta‐9 desaturases, fat‐5, fat‐6 and fat‐7, and of diacylglycerol acyltransferase dgat‐2. Rescue of the STR‐2 function in either AWC and ASI, or ASI sensory neurons alone, restores expression of fat‐5, dgat‐2 and restores LD stores and longevity. Rescue of stored fat levels of GPCR mutant animals to wild‐type levels, with low concentration of glucose, rescues its lifespan phenotype. In all, we show that neuronal STR‐2 GPCR facilitates control of neutral lipid levels and longevity in C. elegans.  相似文献   

17.
18.
Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para‐ortholog, Smed‐exoc3, abrogates in vivo tissue homeostasis and regeneration—processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2‐deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin (Vim)—a known inducer of LD formation. Smed‐exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl‐L‐carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2‐deficient ESCs and organ maintenance in Smed‐exoc3‐depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance.  相似文献   

19.
黄颡鱼MSTN基因多态性及其与生长性状的相关性分析   总被引:2,自引:0,他引:2  
Zhu YY  Liang HW  Li Z  Luo XZ  Li L  Zhang ZW  Zou GW 《遗传》2012,34(1):72-78
肌肉生长抑制素基因(Myostatin,MSTN)属于转化生长因子β家族,其主要功能是负向调控肌肉的生长发育。采用PCR-SSCP技术对黄颡鱼MSTN基因进行单核苷酸多态性检测和分型,并与其生长性状进行关联分析。结果表明,在第一内含子部分检测到1个缺失位点和2个突变位点(T1003del、G1022A和T1063G),基因型分别为:AA、AB、CC、CD和DD;在第三外显子部分检测到1个突变位点(T132C),基因型分别为:EE和EF。关联性分析表明,AA基因型个体的全长、体长、体高、体厚、头长和体重显著大于CD和DD基因型(P<0.05),AA基因型雌性个体的全长、体长、体高、体厚、头长、尾柄高、尾柄厚和体重也显著大于DD基因型(P<0.05)。由此推断,AA基因型是影响雌性黄颡鱼生长性状的有利基因型,DD基因型是影响雌性黄颡鱼生长性状的不利基因型,可以尝试利用这两个位点对雌性黄颡鱼进行标记辅助选育。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号