首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alewife, Alosa pseudoharengus, populations occur in two discrete life-history variants, an anadromous form and a landlocked (freshwater resident) form. Landlocked populations display a consistent pattern of life-history divergence from anadromous populations, including earlier age at maturity, smaller adult body size, and reduced fecundity. In Connecticut (USA), dams constructed on coastal streams separate anadromous spawning runs from lake-resident landlocked populations. Here, we used sequence data from the mtDNA control region and allele frequency data from five microsatellite loci to ask whether coastal Connecticut landlocked alewife populations are independently evolved from anadromous populations or whether they share a common freshwater ancestor. We then used microsatellite data to estimate the timing of the divergence between anadromous and landlocked populations. Finally, we examined anadromous and landlocked populations for divergence in foraging morphology and used divergence time estimates to calculate the rate of evolution for foraging traits. Our results indicate that landlocked populations have evolved multiple times independently. Tests of population divergence and estimates of gene flow show that landlocked populations are genetically isolated, whereas anadromous populations exchange genes. These results support a 'phylogenetic raceme' model of landlocked alewife divergence, with anadromous populations forming an ancestral core from which landlocked populations independently diverged. Divergence time estimates suggest that landlocked populations diverged from a common anadromous ancestor no longer than 5000 years ago and perhaps as recently as 300 years ago, depending on the microsatellite mutation rate assumed. Examination of foraging traits reveals landlocked populations to have significantly narrower gapes and smaller gill raker spacings than anadromous populations, suggesting that they are adapted to foraging on smaller prey items. Estimates of evolutionary rates (in haldanes) indicate rapid evolution of foraging traits, possibly in response to changes in available resources.  相似文献   

2.
The tendency of many species to abandon migration remains a poorly understood aspect of evolutionary biology that may play an important role in promoting species radiation by both allopatric and sympatric mechanisms. Anadromy inherently offers an opportunity for the colonization of freshwater environments, and the shift from an anadromous to a wholly freshwater life history has occurred in many families of fishes. Freshwater‐resident forms have arisen repeatedly among lampreys (within the Petromyzontidae and Mordaciidae), and there has been much debate as to whether anadromous lampreys, and their derived freshwater‐resident analogues, constitute distinct species or are divergent ecotypes of polymorphic species. Samples of 543 European river lamprey Lampetra fluviatilis (mostly from anadromous populations) and freshwater European brook lamprey Lampetra planeri from across 18 sites, primarily in the British Isles, were investigated for 13 polymorphic microsatellite DNA loci, and 108 samples from six of these sites were sequenced for 829 bp of mitochondrial DNA (mtDNA). We found contrasting patterns of population structure for mtDNA and microsatellite DNA markers, such that low diversity and little structure were seen for all populations for mtDNA (consistent with a recent founder expansion event), while fine‐scale structuring was evident for nuclear markers. Strong differentiation for microsatellite DNA loci was seen among freshwater‐resident L. planeri populations and between L. fluviatilis and L. planeri in most cases, but little structure was evident among anadromous L. fluviatilis populations. We conclude that postglacial colonization founded multiple freshwater‐resident populations with strong habitat fidelity and limited dispersal tendencies that became highly differentiated, a pattern that was likely intensified by anthropogenic barriers.  相似文献   

3.
Morphological analysis of three‐spined stickleback Gasterosteus aculeatus collected in Middleton Island, Alaska, was conducted in order to study how gene flow and selection interact during divergence. Middleton Island was uplifted by 3·4 m during the Great Alaska Earthquake in 1964; this event formed a series of new freshwater sites, triggering rapid evolution, and probably rapid speciation, in G. aculeatus populations that colonized them. The level of hybridization between the anadromous and the resident freshwater populations is reflected by the level of morphological variance of the resident freshwater G. aculeatus. Therefore, geographic isolation of the sites from the sea (approximating gene flow) and ionic concentration of the water (reflecting selection pressures) were correlated with morphological variance of the resident freshwater populations. Geographic isolation was negatively correlated with morphological variance in a majority of the analysed traits. Both selection and gene flow surrogates were found to be important influences on variance in morphology, though selection had a larger effect, especially on armour traits. It was concluded that gene flow appeared to constrain ecological speciation, but even in the presence of gene flow the strong selection in the freshwater environment was apparently leading to rapid divergence.  相似文献   

4.
We used no‐choice mating trials to test for assortative mating between a newly derived resident‐freshwater population (8–22 generations since founding) of threespine stickleback (Gasterosteus aculeatus) in Loberg Lake, Alaska and its putative anadromous ancestor as well as a morphologically convergent but distantly related resident‐freshwater population. Partial reproductive isolation has evolved between the Loberg Lake population and its ancestor within a remarkably short time period. However, Loberg stickleback readily mate with morphologically similar, but distantly related resident‐freshwater stickleback. Partial premating isolation is asymmetrical; anadromous females and smaller resident‐freshwater males from Loberg Lake readily mate, but the anadromous males and smaller Loberg females do not. Our results indicate that premating isolation can begin to evolve in allopatry within a few generations after isolation as a correlated effect of evolution of reduced body size.  相似文献   

5.
The genetic diversity of anadromous and freshwater Atlantic salmon ( Salmo salar ) populations from north-west Russia and other north European locations was compared using microsatellite variation to evaluate the importance of anadromous migration, population size and population glacial history in determining population genetic diversity and divergence. In anadromous Atlantic salmon populations, the level of genetic diversity was significantly higher and the level of population divergence was significantly lower than among the freshwater Atlantic salmon populations, even after correcting for differences in stock size. The phylogeographic origin of the populations also had a significant effect on the genetic diversity characteristics of populations: anadromous populations from the basins of the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than anadromous populations from the Baltic Sea basin. Among the freshwater populations, the result was the opposite: the Baltic freshwater populations were more variable. The results of this study imply that differences in the level of long-term gene flow between freshwater populations and anadromous populations have led to different levels of genetic diversity, which was also evidenced by the hierarchical analysis of molecular variance. Furthermore, the results emphasize the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash. Hence, high conservation status is warranted in order to ensure the long-term survival of the limited number of European populations with this life-history strategy.  相似文献   

6.
Ice ages are known to be the most dominant palaeoclimatic feature occurring on Earth, producing severe climatic oscillations and consequently shaping the distribution and the population structure of several species. Lampreys constitute excellent models to study the colonization of freshwater systems, as they commonly appear in pairs of closely related species of anadromous versus freshwater resident adults, thus having the ability to colonize new habitats, through the anadromous species, and establish freshwater resident derivates. We used 10 microsatellite loci to investigate the spatial structure, patterns of gene flow and migration routes of Lampetra populations in Europe. We sampled 11 populations including the migratory L. fluviatilis and four resident species, L. planeri, L. alavariensis, L. auremensis and L. lusitanica, the last three endemic to the Iberian Peninsula. In this southern glacial refugium almost all sampled populations represent a distinct genetic cluster, showing high levels of allopatric differentiation, reflecting long periods of isolation. As result of their more recent common ancestor, populations from northern Europe are less divergent among them, they are represented by fewer genetic clusters, and there is evidence of strong recent gene flow among populations. These previously glaciated areas from northern Europe may have been colonized from lampreys expanding out of the Iberian refugia. The pair L. fluviatilis/L. planeri is apparently at different stages of speciation in different locations, showing evidences of high reproductive isolation in the southern refugium, and low differentiation in the north.  相似文献   

7.
Heterozygosity and phylogenetic relationships were analyzed using eight microsatellite loci for nine freshwater and one anadromous populations of threespine stickleback Gasterosteus aculeatus from northern Japan. Fis values and Hardy–Weinberg tests indicated that nine of the populations were in heterozygote deficit. Furthermore, on-going isolation of most of the populations by artificial destruction of population connection and habitat deterioration suggested that nearly all of the populations are likely to be in a threatened condition. Phylogenetic analysis revealed that there were two distinctive phylogenetic groups, each of which was composed of two and three freshwater populations. These populations included in the groups except ones recently established were located in inland waters and isolated from anadromous populations, so that they may have been able to keep unique genetic features. Therefore, it is necessary to protect as many populations as possible within the local population network including these inland populations. On the other hand, for freshwater populations located near the river mouth but recently isolated from anadromous populations by weir construction, it is important to remove or ameliorate the barrier and recover the gene flow. Microsatellite markers are important tools to monitor the population network and gene flow.  相似文献   

8.
Douglas‐fir (Pseudotsuga menziesii) is one of numerous wide‐range forest tree species represented by subspecies/varieties, which hybridize in contact zones. This study examined the genetic structure of this North American conifer and its two hybridizing varieties, coastal and Rocky Mountain, at intervarietal and intravarietal level. The genetic structure was subsequently associated with the Pleistocene refugial history, postglacial migration and intervarietal hybridization/introgression. Thirty‐eight populations from the USA and Canada were genotyped for 13 nuclear SSRs and analyzed with simulations and traditional population genetic structuring methods. Eight genetic clusters were identified. The coastal clusters embodied five refugial populations originating from five distinct refugia. Four coastal refugial populations, three from California and one from western Canada, diverged during the Pleistocene (56.9–40.1 ka). The three Rocky Mountain clusters reflected distinct refugial populations of three glacial refugia. For Canada, ice covered during the Last Glacial Maximum, we present the following three findings. (1) One refugial population of each variety was revealed in the north of the distribution range. Additional research including paleodata is required to support and determine whether both northern populations originated from cryptic refugia situated south or north of the ice‐covered area. (2) An interplay between intravarietal gene flow of different refugial populations and intervarietal gene flow by hybridization and introgression was identified. (3) The Canadian hybrid zone displayed predominantly introgressants of the Rocky Mountain into the coastal variety. This study provides new insights into the complex Quaternary dynamics of this conifer essential for understanding its evolution (outside and inside the native range), adaptation to future climates and for forest management.  相似文献   

9.
Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human‐mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure.  相似文献   

10.
Oncorhynchus mykiss have a diverse array of life history types, and understanding the relationship among types is important for management of the species. Patterns of gene flow between sympatric freshwater resident O. mykiss, commonly known as rainbow trout, and anadromous O. mykiss, commonly known as steelhead, populations are complex and poorly understood. In this study, we attempt to determine the occurrence and pathways of gene flow and the degree of genetic similarity between sympatric resident and anadromous O. mykiss in three river systems, and investigate whether resident O. mykiss are producing anadromous offspring in these rivers, two of which have complete barriers to upstream migration. We found that the population structure of the O. mykiss in these rivers appears to be influenced more by the presence of a barrier to upstream migration than by life history type. The sex ratio of resident O. mykiss located above a barrier, and smolts captured in screw traps was significantly skewed in favor of females, whereas the reverse was true below the barriers, suggesting that male resident O. mykiss readily migrate downstream over the barrier, and that precocious male maturation may be occurring in the anadromous populations. Through paternity analyses, we also provide direct confirmation that resident O. mykiss can produce offspring that become anadromous. Most (89%) of the resident O. mykiss that produced anadromous offspring were males. Our results add to the growing body of evidence that shows that gene flow does readily occur between sympatric resident and anadromous O. mykiss life history types, and indicates that resident O. mykiss populations may be a potential repository of genes for the anadromous life history type.  相似文献   

11.
The threespine stickleback (Gasterosteus aculeatus) is primitively an anadromous or resident marine species but has repeatedly colonized fresh water, where predictable phenotypic divergence usually occurs rapidly. A conspicuous element of this divergence is change of the number and position of lateral armor plates from about 33 that cover the entire flank (complete) to <10 anterior plates (low). This difference is caused primarily by variation at the Ectodysplasin (Eda) locus. The low Eda allele appears to be rarer in two geographically adjacent anadromous populations from Cook Inlet, Alaska than in most marine or anadromous populations reported from elsewhere, and there is no evidence of elevated gene flow for Eda between anadromous and resident lake threespine stickleback populations that breed in sympatry. However, the two anadromous populations are divergent for the frequencies of two complete Eda alleles. It is not clear how monomorphic low-plated freshwater populations in Cook Inlet have almost invariably acquired ancestral low Eda alleles from anadromous ancestors in which this allele appears to be extremely rare.  相似文献   

12.
The species Oncorhynchus mykiss is characterized by a complex life history that presents a significant challenge for population monitoring and conservation management. Many factors contribute to genetic variation in O. mykiss populations, including sympatry among migratory phenotypes, habitat heterogeneity, hatchery introgression, and immigration (stray) rates. The relative influences of these and other factors are contingent on characteristics of the local environment. The Rock Creek subbasin in the middle Columbia River has no history of hatchery supplementation and no dams or artificial barriers. Limited intervention and minimal management have led to a dearth of information regarding the genetic distinctiveness of the extant O. mykiss population in Rock Creek and its tributaries. We used 192 SNP markers and collections sampled over a 5‐year period to evaluate the temporal and spatial genetic structures of O. mykiss between upper and lower watersheds of the Rock Creek subbasin. We investigated potential limits to gene flow within the lower watershed where the stream is fragmented by seasonally dry stretches of streambed, and between upper and lower watershed regions. We found minor genetic differentiation within the lower watershed occupied by anadromous steelhead (FST = 0.004), and evidence that immigrant influences were prevalent and ubiquitous. Populations in the upper watershed above partial natural barriers were highly distinct (FST = 0.093) and minimally impacted by apparent introgression. Genetic structure between watersheds paralleled differences in local demographics (e.g., variation in size), migratory restrictions, and habitat discontinuity. The evidence of restricted gene flow between putative remnant resident populations in the upper watershed and the admixed anadromous population in the lower watershed has implications for local steelhead productivity and regional conservation.  相似文献   

13.
Little is known about the genetic basis differentiating resident and anadromous forms found in many salmonid species. Using a medium‐density SNP array, we documented genomic diversity and divergence at 2336 genetically mapped loci among three pairs of North American anadromous and freshwater Atlantic salmon populations. Our results show that across the genome, freshwater populations have lower diversity and a smaller proportion of private polymorphism relative to anadromous populations. Moreover, differentiation was more pronounced among freshwater than among anadromous populations at multiple spatial scales, suggesting a large effect of genetic drift in these isolated freshwater populations. Using nonhierarchical and hierarchical genome scans, we identified hundreds of markers spread across the genome that are potentially under divergent selection between anadromous and freshwater populations, but few outlier loci were repeatedly found in all three freshwater–anadromous comparisons. Similarly, a sliding window analysis revealed numerous regions of high divergence that were nonparallel among the three comparisons. These last results show little evidence for the parallel evolution of alleles selected for in freshwater populations, but suggest nonparallel adaptive divergence at many loci of small effects distributed through the genome. Overall, this study emphasizes the important role of genetic drift in driving genome‐wide reduction in diversity and divergence in freshwater Atlantic salmon populations and suggests a complex multigenic basis of adaptation to resident and anadromous strategies with little parallelism.  相似文献   

14.
Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine‐scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized.  相似文献   

15.
Understanding the evolutionary mechanisms that affect the genetic divergence between diadromous and resident populations across heterogeneous environments is a challenging task. While diadromy may promote gene flow leading to a lack of genetic differentiation among populations, resident populations tend to be affected by local adaptation and/or plasticity. Studies on these effects on genomic divergence in nonmodel amphidromous species are scarce. Galaxias maculatus, one of the most widespread fish species in the Southern Hemisphere, exhibits two life histories, an ancestral diadromous, specifically, amphidromous form, and a derived freshwater resident form. We examined the genetic diversity and divergence among 20 estuarine and resident populations across the Chilean distribution of G. maculatus and assessed the extent to which selection is involved in the differentiation among resident populations. We obtained nearly 4,400 SNP markers using a RADcap approach for 224 individuals. As expected, collections from estuarine locations typically consist of diadromous individuals. Diadromous populations are highly differentiated from their resident counterparts by both neutral and putative adaptive markers. While diadromous populations exhibit high gene flow and lack site fidelity, resident populations appear to be the product of different colonization events with relatively low genetic diversity and varying levels of gene flow. In particular, the northernmost resident populations were clearly genetically distinct and reproductively isolated from each other suggesting local adaptation. Our study provides insights into the role of life history differences in the maintenance of genetic diversity and the importance of genetic divergence in species evolution.  相似文献   

16.
An increasing body of studies of widely distributed, high latitude species shows a variety of refugial locations and population genetic patterns. We examined the effects of glaciations and dispersal barriers on the population genetic patterns of a widely distributed, high latitude, resident corvid, the gray jay (Perisoreus canadensis), using the highly variable mitochondrial DNA (mtDNA) control region and microsatellite markers combined with species distribution modeling. We sequenced 914 bp of mtDNA control region for 375 individuals from 37 populations and screened seven loci for 402 individuals from 27 populations across the gray jay range. We used species distribution modeling and a range of phylogeographic analyses (haplotype diversity, ΦST, SAMOVA, FST, Bayesian clustering analyses) to examine evolutionary history and population genetic structure. MtDNA and microsatellite markers revealed significant genetic differentiation among populations with high concordance between markers. Paleodistribution models supported at least five potential areas of suitable gray jay habitat during the last glacial maximum and revealed distributions similar to the gray jay's contemporary during the last interglacial. Colonization from and prolonged isolation in multiple refugia is evident. Historical climatic fluctuations, the presence of multiple dispersal barriers, and highly restricted gene flow appear to be responsible for strong genetic diversification and differentiation in gray jays.  相似文献   

17.
Plant species distributed along wide elevational or latitudinal gradients show phenotypic variation due to their heterogeneous habitats. This study investigated whether phenotypic variation in populations of the Solidago virgaurea complex along an elevational gradient is caused by genetic differentiation. A common garden experiment was based on seeds collected from nine populations of the S. virgaurea complex growing at elevations from 1,597 m to 2,779 m a.s.l. on Mt. Norikura in central Japan. Population genetic analyses with microsatellite markers were used to infer the genetic structure and levels of gene flow between populations. Leaf mass per area was lower, while leaf nitrogen and chlorophyll concentrations were greater for higher elevations at which seeds were originally collected. For reproductive traits, plants derived from higher elevations had larger flower heads on shorter stems and flowering started earlier. These elevational changes in morphology were consistent with the clines in the field, indicating that phenotypic variation along the elevational gradient would have been caused by genetic differentiation. However, population genetic analysis using 16 microsatellite loci suggested an extremely low level of genetic differentiation of neutral genes among the nine populations. Analysis of molecular variance also indicated that most genetic variation was partitioned into individuals within a population, and the genetic differentiation among the populations was not significant. This study suggests that genome regions responsible for adaptive traits may differ among the populations despite the existence of gene flow and that phenotypic variation of the S. virgaurea complex along the elevational gradient is maintained by strong selection pressure.  相似文献   

18.
Following glacial recession in southeast Alaska, waterfalls created by isostatic rebound have isolated numerous replicate populations of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in short coastal streams. These replicate isolated populations offer an unusual opportunity to examine factors associated with the maintenance of genetic diversity. We used eight microsatellites to examine genetic variation within and differentiation among 12 population pairs sampled from above and below these natural migration barriers. Geological evidence indicated that the above-barrier populations have been isolated for 8,000–12,500 years. Genetic differentiation among below-barrier populations (F ST = 0.10, 95% C.I. 0.08–0.12) was similar to a previous study of more southern populations of this species. Above-barrier populations were highly differentiated from adjacent below-barrier populations (mean pairwise F ST = 0.28; SD 0.18) and multiple lines of evidence were consistent with asymmetric downstream gene flow that varied among streams. Each above-barrier population had reduced within-population genetic variation when compared to the adjacent below-barrier population. Within-population genetic diversity was significantly correlated with the amount of available habitat in above-barrier sites. Increased genetic differentiation of above-barrier populations with lower genetic diversity suggests that genetic drift has been the primary cause of genetic divergence. Long-term estimates of N e based on loss of heterozygosity over the time since isolation were large (3,170; range 1,077–7,606) and established an upper limit for N e if drift were the only evolutionary process responsible for loss of genetic diversity. However, it is likely that a combination of mutation, selection, and gene flow have also contributed to the genetic diversity of above-barrier populations. Contemporary above-barrier N e estimates were much smaller than long-term N e estimates, not correlated with within-population genetic diversity, and not consistent with the amount of genetic variation retained, given the approximate 10,000-year period of isolation. The populations isolated by waterfalls in this study that occur in larger stream networks have retained substantial genetic variation, which suggests that the amount of habitat in headwater streams is an important consideration for maintaining the evolutionary potential of isolated populations.  相似文献   

19.
We examine sympatric anadromous (steelhead) and nonanadromous (resident) rainbow trout (Oncorhynchus mykiss) from neighboring locations to test three hypotheses: (1) the sympatric life history types are not genetically different; (2) fine-scale dispersal is the same for both sexes, and (3) fine-scale dispersal is the same for steelhead and resident individuals. Data from 13 microsatellite loci reveal no genetic difference between sympatric steelhead and resident O. mykiss but moderate population structure (F ST=0.019–0.028) between adjacent samples, regardless of life history type. Our results provide further evidence of partial anadromy and suggest that geographic proximity and genetic history, more than migratory type, should be considered when identifying populations for use in restoration of local genetic diversity. We find evidence of resident-form dispersal bias on a fine spatial scale, however, we find no evidence that fine-scale dispersal varies by gender. Conservation strategies should aim to maintain resident and anadromous forms when they occur in sympatry, as they may be important in facilitating gene flow on small and large spatial scales, respectively.  相似文献   

20.
The freshwater turtle Mauremys rivulata ranges from the Adriatic coast of the Balkan Peninsula through the Aegean region and coastal western and southern Turkey southwards to Israel. In addition, it occurs on several Aegean islands, Crete and Cyprus. Previous investigations using mtDNA sequences found virtually no genetic differentiation across its distribution range, despite some major biogeographical barriers for terrestrial and freshwater biota. Thus, the absence of any phylogeographical differentiation would be unexpected. To re‐examine genetic differentiation within M. rivulata, here we use a comprehensive rangewide sampling and information of 13 unlinked polymorphic microsatellite loci and compare these data against mtDNA variation. Our microsatellite analyses reveal a weak population structuring which conflicts, however, with most biogeographical barriers. We conclude that the genetic structure in the vast majority of the species' range has been shaped by massive transoceanic gene flow. This explanation is unlikely for the northernmost populations, which seem rather to be genetically impacted by intentionally released foreign turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号