首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unicellular, heterotrophic, eukaryotic parasite was isolated from nearshore Arctic marine sediment in association with the diatom Pleurosigma sp. The parasite possessed ectoplasmic threads that could penetrate diatom frustules. Healthy and reproducing Pleurosigma cultures would begin to collapse within a week following the introduction of this parasite. The parasite (2–10 μm diameter) could reproduce epibiotically with biflagellate zoospores, as well as binary division inside and outside the diatom host. While the parasite grew, diatom intracellular content disappeared. Evaluation of electron micrographs from co‐cultures revealed the presence of hollow tubular processes and amorphic cells that could transcend the diatom frustule, generally at the girdle band, as well as typical thraustochytrid ultrastructure, such as the presence of bothrosomes. After nucleotide extraction, amplification, and cloning, database queries of DNA revealed closest molecular affinity to environmental thraustochytrid clone sequences. Testing of phylogenetic hypotheses consistently grouped this unknown parasite within the Thraustochytriidae on a distinct branch within the environmental sequence clade Lab19. Reclassification of Arctic high‐throughput sequencing data, with appended reference datasets that included this diatom parasite, indicated that the majority of thraustochytrid sequences, previously binned as unclassifiable stramenopiles, are allied to this new isolate. Based on the combined information acquired from electron microscopy, life history, and phylogenetic testing, this unknown isolate is described as a novel species and genus.  相似文献   

2.
3.
The classical athecate dinoflagellate genera (Amphidinium, Gymnodinium, Gyrodinium) have long been recognized to be polyphyletic. Amphidinium sensu lato is the most diverse of all marine benthic dinoflagellate genera; however, following the redefinition of this genus ~100 species remain now of uncertain or unknown generic affiliation. In an effort to improve our taxonomic and phylogenetic understanding of one of these species, namely Amphidinium semilunatum, we re‐investigated organisms from several distant sites around the world using light and scanning electron microscopy and molecular phylogenetic methods. Our results enabled us to describe this species within a new heterotrophic genus, Ankistrodinium. Cells of A. semilunatum were strongly laterally flattened, rounded‐quadrangular to oval in lateral view, and possessed a small asymmetrical epicone. The sulcus was wide and characteristically deeply incised on the hypocone running around the antapex and reaching the dorsal side. The straight acrobase with hook‐shaped end started at the sulcal extension and continued onto the epicone. The molecular phylogenetic results clearly showed that A. semilunatum is a distinct taxon and is only distantly related to species within the genus Amphidinium sensu stricto. The nearest sister group to Ankistrodinium could not be reliably determined.  相似文献   

4.
A novel cercozoan filose thecate amoeba, Trachyrhizium urniformis n. g., n. sp., was isolated from a marine sediment sample collected at Agenashiku Island, Okinawa, Japan. We performed light and electron microscopic observations, and a molecular phylogenetic analysis using the small subunit ribosomal RNA gene of the isolate. Cells of T. urniformis are spherical in shape and are covered by a thin theca possessing a wide rounded aperture. Branching and occasionally anastomosing filopodia with small granules emerge from the aperture. The granules are transported in the filopodia bidirectionally. Transmission electron microscopy showed that cells of T. urniformis possess nucleus with permanently condensed chromatin, Golgi apparatuses, microbodies, mitochondria with tubular cristae, and extrusomes. Several morphological and ultrastructural features of T. urniformis (the presence of thecae and nucleus with permanently condensed chromatin) show similarities with those of Thecofilosea. In a phylogenetic analysis, T. urniformis included in Thecofilosea with weak statistical supports and formed a clade with two sequences that constitutes a cercozoan environmental clade, novel clade 4. On the basis of morphological and ultrastructural information and the results of the phylogenetic analysis, we propose T. urniformis as a new member of class Thecofilosea.  相似文献   

5.
An actinomycete wild strain PM0626271 (= MTCC 5447), producing novel antibacterial compounds, was isolated from soil collected from Antarctica. The taxonomic status of the isolate was established by polyphasic approach. Scanning electron microscopy observations and the presence of LL‐Diaminopimelic acid in the cell wall hydrolysate confirmed the genus Streptomyces. Analysis of 16S rRNA gene sequence showed highest sequence similarity to Streptomyces radiopugnans (99%). The phylogenetic tree constructed using near complete 16S rRNA gene sequences of the isolate and closely related strains revealed that although the isolate fell within the S. radiopugnans gene subclade, it was allocated a different branch in the phylogenetic tree, separating it from the majority of the radiopugnans strains. Similar to type strain, S. radiopugnans R97T, the Antarctica isolate displayed thermo tolerance as well as resistance to 60Co gamma radiation, up to the dose of 15 kGy. However, media and salt tolerance studies revealed that, unlike the type strain, this isolate needed higher salinity for its growth. This is the first report of S. radiopugnans isolated from the Antarctica region. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Streptomyces radiopugnans MTCC 5447 is JQ723477 .

Significance and Impact of the Study

The study presents the first report of isolation of Streptomyces radiopugnans from Antarctica. To date, there is only one publication regarding S. radiopugnans R97T isolated from radiation‐polluted soil. Like the type strain, Antarctica isolate was thermotolerant and radiotolerant, but in addition, it required salts for growth and did not degrade phenol. We envisaged that metabolic pattern of the same species varies based on acclimatization in its native ecological habitat. Additionally, Antarctica isolate had produced novel antibacterial compounds (patent‐US2012/0156295). The study highlighted that least explored extreme regions like Antarctica are rich resources of novel microbial strains producing novel bioactive compounds.  相似文献   

6.
A new species of Cochliopodium isolated from freshwater at Arabia Lake in Lithonia, GA, USA is described based on light microscopic morphology, fine structure, and molecular genetic evidence. Cochliopodium arabianum n. sp., previously labeled as “isolate Con1” in prior publications, has been shown to group within the genus Cochliopodium in our molecular phylogenetic analysis. Light microscopy and fine structure evidence indicates the new isolate not only shares characters of the genus but also unique distinctive features. Cochliopodium arabianum n. sp. is typically round when stationary; or oval to sometimes broadly flabellate or triangular in shape during locomotion, with average length of 35 μm and breadth of 51 μm. Fine structure evidence indicates C. arabianum n. sp. has tower‐like scales, lacking a terminal spine, sharing high similarity with its closest relative C. actinophorum. However, the scales of C. arabianum n. sp. are unique in height and the breadth of the base plate. Both morphological and molecular data, including SSU‐rDNA and COI, indicate that this new species falls in a clade sufficiently different from other species to suggest that it is a valid new species.  相似文献   

7.
Gregarines are a diverse group of apicomplexan parasites with a conspicuous extracellular feeding stage, called a “trophozoite”, that infects the intestines and other body cavities of invertebrate hosts. Although the morphology of trophozoites is very diverse in gregarines as a whole, high degrees of intraspecific variation combined with relatively low degrees of interspecific variation make the delimitation of different species based on trophozoite morphology observed with light microscopy difficult. The coupling of molecular phylogenetic data with comparative morphology has shed considerable light onto the boundaries and interrelationships of different gregarine species. In this study, we isolated a novel marine gregarine from the hepatic region of a Pacific representative of the hemichordate Glossobalanus minutus, and report the first ultrastructural and molecular data from any gregarine infecting this distinctive group of hosts. Molecular phylogenetic analyses of an SSU rDNA sequence derived from two single‐cell isolates of this marine gregarine demonstrated a strong and unexpected affiliation with a clade of terrestrial gregarines (e.g. Gregarina). This molecular phylogenetic data combined with a comparison of the morphological features in previous reports of gregarines collected from Atlantic representatives of G. minutus justified the establishment of a new binomial for the new isolate, namely Caliculium glossobalani n. gen. et sp. The molecular phylogenetic analyses demonstrated a clade of terrestrial gregarines associated with a sequence acquired from a marine species, which suggest that different groups of terrestrial/freshwater gregarines evolved independently from marine ancestors.  相似文献   

8.
In an effort to broaden our understanding of the biodiversity and distribution of gregarines infecting crustaceans, this study describes two new species of gregarines, Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp., parasitizing a deep sea amphipod (Oradarea sp.). Amphipods were collected using the ROV Hyper‐Dolphin at a depth of 855 m while on a cruise in Sagami Bay, Japan. Gregarine trophozoites and gamonts were isolated from the gut of the amphipod and studied with light and scanning electron microscopy, and phylogenetic analysis of 18S rDNA. Thiriotia hyperdolphinae n. sp. was distinguished from existing species based on morphology, phylogenetic position, as well as host niche and geographic locality. Cephaloidophora oradareae n. sp. distinguished itself from existing Cephaloidophora, based on a difference in host (Oradarea sp.), geographic location, and to a certain extent morphology. We established this latter new species with the understanding that a more comprehensive examination of diversity at the molecular level is necessary within Cephaloidophora. Results from the 18S rDNA molecular phylogeny showed that T. hyperdolphinae n. sp. was positioned within a clade consisting of Thiriotia spp., while C. oradareae n. sp. grouped within the Cephaloidophoridae. Still, supplemental genetic information from gregarines infecting crustaceans will be needed to better understand relationships within this group of apicomplexans.  相似文献   

9.
Members of the genus Paramoeba (including Neoparamoeba) (Amoebozoa) are single‐celled eukaryotes of economic and ecological importance because of their association with disease in a variety of marine animals including fish, sea urchins, and lobster. Interestingly, they harbor a eukaryotic endosymbiont of kinetoplastid ancestry, Perkinsela sp. To investigate the complex relationship between Paramoeba spp. and Perkinsela sp., as well as the relationships between different Paramoeba species, molecular data was obtained for four novel isolates. We also acquired new data from the urchin pathogen P. invadens. Comprehensive molecular phylogenetic analyses were carried out using 33 newly obtained 18S rDNA sequences from the host amoebae and 16 new 18S rDNA sequences from their corresponding Perkinsela sp., together with all publicly available 18S molecular data. Intra‐isolate 18S rDNA nucleotide diversity was found to be surprisingly high within the various species of Paramoeba, but relatively low within their Perkinsela sp. endosymbionts. 18S rDNA phylogenies and ParaFit co‐evolution analysis revealed a high degree of congruence between the Paramoeba and Perkinsela sp. tree topologies, strongly suggesting that a single endosymbiotic event occurred in the common ancestor of known Paramoeba species, and that the endosymbionts have been inherited vertically ever since.  相似文献   

10.
ABSTRACT. Marine goniomonads have a worldwide distribution but ultrastructural information has not been available so far. An isolate of the heterotrophic marine nanoflagellate Goniomonas (G. aff. amphinema) from North Wales (UK) has been studied, providing information on its morphology and cellular structure using video, electron, laser scanning confocal microscopy (LSCM), and atomic force microscopy. Here, we describe a new feature, a granular area, potentially involved in particle capture and feeding. The binding of the lectin wheat germ agglutinin to the granular area of cells with discharged ejectisomes indicates the adhesive nature of this novel feature. The presence of a microtubular intracellular cytopharynx, apparently also used for feeding, has been revealed by LSCM. The small subunit rRNA gene of the isolate has been sequenced (1,788 bp). Phylogenetic results corroborate significant genetic divergence within the marine members of Goniomonas. This work highlights the need for integrated morphological, ultrastructural, and molecular investigation when describing and studying heterotrophic nanoflagellates.  相似文献   

11.
12.
A cyanobacterial mat colonizing the leaves of Eucalyptus grandis was determined to be responsible for serious damage affecting the growth and development of whole plants under the clonal hybrid nursery conditions. The dominant cyanobacterial species was isolated in BG‐11 medium lacking a source of combined nitrogen and identified by cell morphology characters and molecular phylogenetic analysis (16S rRNA gene and cpcBA‐IGS sequences). The isolated strain represents a novel species of the genus Brasilonema and is designated Brasilonema octagenarum strain UFV‐E1. Thin sections of E. grandis leaves analyzed by light and electron microscopy showed that the B. octagenarum UFV‐E1 filaments penetrate into the leaf mesophyll. The depth of infection and the mechanism by which the cyanobacterium invades leaf tissue were not determined. A major consequence of colonization by this cyanobacterium is a reduction in photosynthesis in the host since the cyanobacterial mats decrease the amount of light incident on leaf surfaces. Moreover, the cyanobacteria also interfere with stomatal gas exchange, decreasing CO2 assimilation. To our knowledge, this is the first report of an epiphytic cyanobacterial species causing damage to E. grandis leaves.  相似文献   

13.

Background  

Gaining the ability to photosynthesize was a key event in eukaryotic evolution because algae and plants form the base of the food chain on our planet. The eukaryotic machines of photosynthesis are plastids (e.g., chloroplast in plants) that evolved from cyanobacteria through primary endosymbiosis. Our knowledge of plastid evolution, however, remains limited because the primary endosymbiosis occurred more than a billion years ago. In this context, the thecate "green amoeba" Paulinella chromatophora is remarkable because it very recently (i.e., minimum age of ≈ 60 million years ago) acquired a photosynthetic organelle (termed a "chromatophore"; i.e., plastid) via an independent primary endosymbiosis involving a Prochlorococcus or Synechococcus -like cyanobacterium. All data regarding P. chromatophora stem from a single isolate from Germany (strain M0880/a). Here we brought into culture a novel photosynthetic Paulinella strain (FK01) and generated molecular sequence data from these cells and from four different cell samples, all isolated from freshwater habitats in Japan. Our study had two aims. The first was to compare and contrast cell ultrastructure of the M0880/a and FK01 strains using scanning electron microscopy. The second was to assess the phylogenetic diversity of photosynthetic Paulinella to test the hypothesis they share a vertically inherited plastid that originated in their common ancestor.  相似文献   

14.
A strain of Chloromonas pseudoplatyrhyncha (Pascher) P. C. Silva, which has not been studied previously using cultured material, was established from a soil sample collected in Japan and examined by light microscopy, transmission electron microscopy, and molecular phylogenetic analyses. The chloroplasts of this species showed no pyrenoids under light microscopy. However, transmission electron microscopy and the staining methods with carmine after fixation in an acidified hypochlorite solution revealed that Chloromonas pseudoplatyrhyncha actually had multiple, atypical pyrenoids (pyrenoid matrices without associated starch grains) that were angular in shape and distributed in the interior regions of the lobes of the chloroplasts. Although some other species of Chloromonas have atypical pyrenoids in the chloroplast, such angular pyrenoids have not previously been reported within the Volvocales. The present molecular phylogenetic analysis, based on 18S ribosomal RNA, adenosine triphosphate synthase β‐subunit, and P700 chlorophyll a‐apoprotein A2 gene sequences, demonstrated that Chloromonas pseudoplatyrhyncha belonged to the Chloromonas lineage or Chloromonadinia, in which it occupied a basal position outside a robust, large monophyletic group consisting of 13 species of Chloromonas and Gloeomonas.  相似文献   

15.
To assess the accuracy of species delimitation and phylogenetic relationships of the Aleochara fucicola species complex, we performed molecular phylogenetic analyses. Detailed micromorphological characters were also examined using scanning electron microscopy (SEM). The molecular data set included two mitochondrial (COI and COII) and three nuclear protein‐coding genes (CAD, EF1α and wg) for 19 populations of five species. Significant discordance was found between mitochondrial and nuclear gene trees. Two species, A. puetzi (Assing) and A. segregata Yamamoto and Maruyama, were not separated in the mitochondrial gene trees, but clearly were differentiated in the nuclear and concatenated gene trees. The SEM data also supported the separation of these two species, but an analysis of genetic divergence data did not. Adaptation to extremely harsh environments might reduce morphological variation in the A. fucicola species complex during the colonization of seashores. We present a multilocus phylogeny of the species complex. It suggests that the ancestor of the A. fucicola species complex occurred along the southern coasts of Northeast Asia, followed by dispersals to northern coasts.  相似文献   

16.
A bacterial strain that is capable of hydrolyzing plant glucosylceramide (GluCer) was newly isolated from dog feces. The novel strain, designated as strain HFTH-1T, hydrolyzed plant GluCer with a variety of chemical structures, but did not hydrolyze glucosylsphingosine, lactosylceramide, or monosialoganglioside GM3, indicating that strain HFTH-1T produces GluCer-specific glucosylceramidase. Strain HFTH-1T was Gram-positive, anaerobic, oval-spore-forming, rod-shaped, lecithinase-negative, and lipase-negative. It fermented a wide variety of carbohydrates and produced mainly acetate, formate, and lactate from glucose. The G + C content of its DNA was 40.7 mol%. The phylogenetic analysis of 16S rRNA sequence revealed that strain HFTH-1T is placed in the clostridial rRNA cluster XIVa, with Ruminococcus obeum as the nearest relative. Pairwise comparison revealed approximately 5.0% sequence divergence between strain HFTH-1T and the type strain of R. obeum. On the basis of its phenotypic characteristics and phylogenetic divergence, it is proposed that the hitherto unknown rod-shaped bacterial strain HFTH-1T (= DSM 22028T = NBRC 104932T) should be placed in the genus Blautia as a novel species, Blautia glucerasei sp. nov, the only currently known isolate of the species.  相似文献   

17.
Chytrids are true fungi that reproduce with posteriorly uniflagellate zoospores. In the last decade, environmental DNA surveys revealed a large number of uncultured chytrids as well as undescribed order‐level novel clades in Chytridiomycota. Although many species have been morphologically described, only some DNA sequence data of parasitic chytrids are available from the database. We herein discuss five cultures of parasitic chytrids on diatoms Aulacoseira spp. and Asterionella formosa. In order to identify the chytrids examined, thallus morphologies were observed using light microscopy. We also conducted a phylogenetic analysis using 18S, 5.8S, and 28S rDNA sequences to obtain their phylogenetic positions. Based on their morphological characteristics, two cultures parasitic on As. formosa were identified as Rhizophydium planktonicum and Zygorhizidium planktonicum. The other three cultures infecting Aulacoseira spp. (two on Aulacoseira ambigua and the other on Aulacoseira granulata) were regarded as Zygorhizidium aff. melosirae. The results of the molecular phylogenetic analysis revealed that R. planktonicum belonged to the known order Chytridiales, while the two species of Zygorhizidium were placed in a novel clade that was previously reported as an undescribed clade composed of only the environmental sequences of uncultured chytrids.  相似文献   

18.
The phylogenetic position of Cephalenchus is enigmatic with respect to other tylench nematodes. In this study, Cephalenchus populations representing 11 nominal species were sampled worldwide for molecular and morphological characterization. Species identification was based on light microscopy (LM) and scanning electron microscopy (SEM). Molecular analyses were based on the genes (i.e. 18S, 28S, 5.8S) and internal transcribed spacers (ITS‐1 and ITS‐2) of the ribosomal RNA (rRNA). Phylogenetic analyses (i.e. full and reduced alignments) of either concatenated or single genes always supported the monophyly of Cephalenchus. A sister relationship between Cephalenchus and Eutylenchus excretorius was recovered by most analyses, although branch support varies depending on the dataset used. The position of Cephalenchus + E. excretorius within Tylenchomorpha nevertheless remains ambiguous, thus highlighting the importance of sampling additional genes as well as taxa. Placement of Cephalenchus + E. excretorius as sister of Tylenchinae or Boleodorinae could not be rejected on the basis of 18S and 28S rRNA genes. Within Cephalenchus, amphidial opening morphology shows congruence with molecular‐based phylogenetic relationships, whereas the number of lines in the lateral field is likely to be a convergent trait. Morphometric analyses clearly distinguished short tail from medium–long tail species, and SEM observations seem to suggest a relation between tail length and amphidial opening. In addition, molecular phylogenies support the non‐monophyly of Cephalenchus cephalodiscus, Cephalenchus cylindricus, Cephalenchus daisuce and Cephalenchus leptus. The known extent of Cephalenchus diversity is increased with the inclusion of two new species, and the biogeography of the genus is discussed.  相似文献   

19.
The symbiotic dinoflagellate Gymnoxanthella radiolariae T. Yuasa et T. Horiguchi gen. et sp. nov. isolated from polycystine radiolarians is described herein based on light, scanning and transmission electron microscopy as well as molecular phylogenetic analyses of SSU and LSU rDNA sequences. Motile cells of G. radiolariae were obtained in culture, and appeared to be unarmored. The cells were 9.1–11.4 μm long and 5.7–9.4 μm wide, and oval to elongate oval in the ventral view. They possessed an counterclockwise horseshoe‐shaped apical groove, a nuclear envelope with vesicular chambers, cingulum displacement with one cingulum width, and the nuclear fibrous connective; all of these are characteristics of Gymnodinium sensu stricto (Gymnodinium s.s.). Molecular phylogenetic analyses also indicated that G. radiolariae belongs to the clade of Gymnodinium s.s. However, in our molecular phylogenetic trees, G. radiolariae was distantly related to Gymnodinium fuscum, the type species of Gymnodinium. Based on the consistent morphological, genetic, and ecological divergence of our species with the other genera and species of Gymnodinium s.s., we considered it justified to erect a new, separate genus and species G. radiolariae gen. et sp. nov. As for the peridinioid symbiont of radiolarians, Brandtodinium has been erected as a new genus instead of Zooxanthella, but the name Zooxanthella is still valid. Brandtodinium is a junior synonym of Zooxanthella. Our results suggest that at least two dinoflagellate symbiont species, peridinioid Zooxanthella nutricula and gymnodinioid G. radiolariae, exist in radiolarians, and that they may have been mixed and reported as “Z. nutricula” since the 19th century.  相似文献   

20.
Bambusa multiplex has been broadly cultivated in China and has significant economical, ecological and ornamental importance. A canker on the culm of B. multiplex was first time discovered in 2015 in Shanghai, China. In this study, the fungal isolate XSZ‐1 isolated from the infected tissues was determined to be a pathogen of canker on the culm of B. multiplex by fulfilling Koch's postulates. The fungal pathogen was identified as Fusarium incarnatum based on the morphological characteristics and phylogenetic analyses with the sequences of ITS, TEF‐1α and RPB2. To our knowledge, this is the first report of a canker on the culm of B. multiplex caused by F. incarnatum worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号