首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In temperate regions, an organism's ability to rapidly adapt to seasonally varying environments is essential for its survival. In response to seasonal changes in selection pressure caused by variation in temperature, humidity, and food availability, some organisms exhibit plastic changes in phenotype. In other cases, seasonal variation in selection pressure can rapidly increase the frequency of genotypes that offer survival or reproductive advantages under the current conditions. Little is known about the relative influences of plastic and genetic changes in short‐lived organisms experiencing seasonal environmental fluctuations. Cold hardening is a seasonally relevant plastic response in which exposure to cool, but nonlethal, temperatures significantly increases the organism's ability to later survive at freezing temperatures. In the present study, we demonstrate seasonal variation in cold hardening in Drosophila melanogaster and test the extent to which plasticity and adaptive tracking underlie that seasonal variation. We measured the post‐cold hardening freeze tolerance of flies from outdoor mesocosms over the summer, fall, and winter. We bred outdoor mesocosm‐caught flies for two generations in the laboratory and matched each outdoor cohort to an indoor control cohort of similar genetic background. We cold hardened all flies under controlled laboratory conditions and then measured their post‐cold hardening freeze tolerance. Comparing indoor and field‐caught flies and their laboratory‐reared G1 and G2 progeny allowed us to determine the roles of seasonal environmental plasticity, parental effects, and genetic changes on cold hardening. We also tested the relationship between cold hardening and other factors, including age, developmental density, food substrate, presence of antimicrobials, and supplementation with live yeast. We found strong plastic responses to a variety of field‐ and laboratory‐based environmental effects, but no evidence of seasonally varying parental or genetic effects on cold hardening. We therefore conclude that seasonal variation in post‐cold hardening freeze tolerance results from environmental influences and not genetic changes.  相似文献   

2.
To cope with the increasing and less‐predictable temperature forecasts under climate change, many terrestrial ectotherms will have to migrate or rely on adaptation through plastic or evolutionary means. Studies suggest that some ectotherms have a limited potential to change their upper thermal limits via evolutionary shifts, but research has mostly focused on adult life stages under laboratory conditions. Here we use replicate populations of Drosophila melanogaster and a nested half‐sib/full‐sib quantitative genetic design to estimate heritabilities and genetic variance components for egg‐to‐adult viability under both laboratory and seminatural field conditions, encompassing cold, benign, and hot temperatures in two separate populations. The results demonstrated temperature‐specific heritabilities and additive genetic variances for egg‐to‐adult viability. Heritabilities and genetic variances were higher under cold and benign compared to hot temperatures when tested under controlled laboratory conditions. Tendencies toward lower evolutionary potential at higher temperatures were also observed under seminatural conditions although the results were less clear in the field setting. Overall the results suggest that ectotherms that already experience temperatures close to their upper thermal tolerance limits have a restricted capacity to adapt to higher temperatures by evolutionary means.  相似文献   

3.
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short‐term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill‐coma recovery and cold stress survival) and their responses to developmental and short‐term acclimation. Chill‐coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short‐term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade‐off between basal cold tolerance and short‐term acclimation during warmer months. For the longer‐term developmental acclimation, a trade‐off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.  相似文献   

4.
Ambient temperature is an ubiquitous environmental factor affecting all organisms. Global climate change increases temperature variation and the frequency of extreme temperatures, which may pose challenges to ectotherms. Here, we examine phenotypic plasticity to temperature and genotypic effects on thermal tolerance in the Glanville fritillary butterfly (Melitaea cinxia). We found no significant difference in heat or cold tolerance in populations originating from a continental climate in China and from Finland with moderate temperature variation. Acclimation to large-amplitude temperature variation increased heat tolerance in both populations, but decreased cold tolerance and increased hsp70-2 expression in the Chinese population only. The latter result indicates a genotypic effect in the response to temperature variation. In the Finnish population, a non-synonymous SNP in the phosphoglucose isomerase (Pgi) gene was associated with heat knock-down time.  相似文献   

5.
Insect cold hardiness is often mediated by low molecular weight cryoprotectants, such as sugars, polyols, and amino acids (AA). While many free-living northern insects must cope with extended periods of freezing ambient temperatures (Ta), the ectoparasitic deer ked Lipoptena cervi imago can encounter subfreezing Ta only during a short autumnal period between hatching and host location. Subsequently, it benefits from the body temperature of the cervid host for survival in winter. This study investigated the cold tolerance of the species by determining its lower lethal temperature (100% mortality, LLT100) during faster and slower cold acclimation, by determining the supercooling point (SCP) and by measuring the concentrations of potential low molecular weight cryoprotectants. The LLT100 of the deer ked was approximately -16 ° C, which would enable it to survive freezing nighttime Ta not only in its current area of distribution but also further north. The SCP was -7.8 ° C, clearly higher than the LLT100 , indicating that the deer ked displays freezing tolerance. The concentrations of free AA, especially nonessential AA, were higher in the cold-acclimated deer keds similar to several other insects. The concentrations of proline increased together with γ-aminobutyrate, arginine, asparagine, cystine, glutamate, glutamine, hydroxylysine, sarcosine, serine, and taurine. AA could be hypothesized to act as cryoprotectants by, e.g., protecting enzymes and lipid membranes from damage caused by cold.  相似文献   

6.
When ectotherms are exposed to low temperatures, they enter a cold‐induced coma (chill coma) that prevents resource acquisition, mating, oviposition, and escape from predation. There is substantial variation in time taken to recover from chill coma both within and among species, and this variation is correlated with habitat temperatures such that insects from cold environments recover more quickly. This suggests an adaptive response, but the mechanisms underlying variation in recovery times are unknown, making it difficult to decisively test adaptive hypotheses. We use replicated lines of Drosophila melanogaster selected in the laboratory for fast (hardy) or slow (susceptible) chill‐coma recovery times to investigate modifications to metabolic profiles associated with cold adaptation. We measured metabolite concentrations of flies before, during, and after cold exposure using nuclear magnetic resonance (NMR) spectroscopy to test the hypotheses that hardy flies maintain metabolic homeostasis better during cold exposure and recovery, and that their metabolic networks are more robust to cold‐induced perturbations. The metabolites of cold‐hardy flies were less cold responsive and their metabolic networks during cold exposure were more robust, supporting our hypotheses. Metabolites involved in membrane lipid synthesis, tryptophan metabolism, oxidative stress, energy balance, and proline metabolism were altered by selection on cold tolerance. We discuss the potential significance of these alterations.  相似文献   

7.
Understanding tolerance of thermal extremes by pest insects is essential for developing integrated management strategies, as tolerance traits can provide insights into constraints on activity and survival. A major question in thermal biology is whether thermal limits vary systematically with microclimate variation, or whether other biotic or abiotic factors can influence these limits in a predictable manner. Here, we report the results of experiments determining thermal limits to activity and survival at extreme temperatures in the stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae), collected from either Saccharum spp. hybrids (sugarcane) (Poaceae) or Cyperus papyrus L. (Cyperaceae) and then reared under standard conditions in the laboratory for 1–2 generations. Chill‐coma temperature (CTmin), critical thermal maximum (CTmax), lower lethal temperatures (LLT), and freezing temperature between E. saccharina collected from the two host plants were compared. CTmin and CTmax of E. saccharina moths collected from sugarcane were significantly lower than those from C. papyrus (CTmin = 2.8 ± 0.4 vs. 3.9 ± 0.4 °C; CTmax = 44.6 ± 0.1 vs. 44.9 ± 0.2 °C). By contrast, LLT of moths and freezing temperatures of pupae did not vary with host plant [LLT for 50% (LT50) of the moth population, when collected from sugarcane: ?3.2 ± 0.5 °C, from C. papyrus: ?3.9 ± 0.8 °C]. Freezing temperatures of pupae collected from C. papyrus were ?18.0 ± 1.0 °C and of those from sugarcane ?17.5 ± 1.8 °C. The E. saccharina which experienced the lowest minimum temperature (in C. papyrus) did not have the lowest CTmin, although the highest estimate of CTmax was found in E. saccharina collected from C. papyrus and this was also the microsite which reported the highest maximum temperatures. These results therefore suggest that host plant may strongly mediate lower critical thermal limits, but not necessarily LLT or freezing temperatures. These results have significant implications for ongoing pest management and thermal biology of these and other insects.  相似文献   

8.
Much attention has been given to recent predictions that widespread extinctions of tropical ectotherms, and tropical forest lizards in particular, will result from anthropogenic climate change. Most of these predictions, however, are based on environmental temperature data measured at a maximum resolution of 1 km2, whereas individuals of most species experience thermal variation on a much finer scale. To address this disconnect, we combined thermal performance curves for five populations of Anolis lizard from the Bay Islands of Honduras with high‐resolution temperature distributions generated from physical models. Previous research has suggested that open‐habitat species are likely to invade forest habitat and drive forest species to extinction. We test this hypothesis, and compare the vulnerabilities of closely related, but allopatric, forest species. Our data suggest that the open‐habitat populations we studied will not invade forest habitat and may actually benefit from predicted warming for many decades. Conversely, one of the forest species we studied should experience reduced activity time as a result of warming, while two others are unlikely to experience a significant decline in performance. Our results suggest that global‐scale predictions generated using low‐resolution temperature data may overestimate the vulnerability of many tropical ectotherms to climate change.  相似文献   

9.
Calling behaviour is strongly temperature‐dependent and critical for sexual selection and reproduction in a variety of ectothermic taxa, including anuran amphibians, which are the most globally threatened vertebrates. However, few studies have explored how species respond to distinct thermal environments at time of displaying calling behaviour, and thus it is still unknown whether ongoing climate change might compromise the performance of calling activity in ectotherms. Here, we used new audio‐trapping techniques (automated sound recording and detection systems) between 2006 and 2009 to examine annual calling temperatures of five temperate anurans and their patterns of geographical and seasonal variation at the thermal extremes of species ranges, providing insights into the thermal breadths of calling activity of species, and the mechanisms that enable ectotherms to adjust to changing thermal environments. All species showed wide thermal breadths during calling behaviour (above 15 °C) and increases in calling temperatures in extremely warm populations and seasons. Thereby, calling temperatures differed both geographically and seasonally, both in terrestrial and aquatic species, and were 8–22 °C below the specific upper critical thermal limits (CTmax) and strongly associated with the potential temperatures of each thermal environment (operative temperatures during the potential period of breeding). This suggests that calling behaviour in ectotherms may take place at population‐specific thermal ranges, diverging when species are subjected to distinct thermal environments, and might imply plasticity of thermal adjustment mechanisms (seasonal and developmental acclimation) that supply species with means of coping with climate change. Furthermore, the thermal thresholds of calling at the onset of the breeding season were dissimilar between conspecific populations, suggesting that other factors besides temperature are needed to trigger the onset of reproduction. Our findings imply that global warming would not directly inhibit calling behaviour in the study species, although might affect other temperature‐dependent features of their acoustic communication system.  相似文献   

10.
  1. Overwintering Drosophila often display adaptive phenotypic differences beneficial for survival at low temperatures. However, it is unclear which morphological traits are the best estimators of abiotic conditions, how those traits are correlated with functional outcomes in cold tolerance, and whether there are regional differences in trait expression.
  2. We used a combination of controlled laboratory assays, and collaborative field collections of invasive Drosophila suzukii in different areas of the United States, to study the factors affecting phenotype variability of this temperate fruit pest now found globally.
  3. Laboratory studies demonstrated that winter morph (WM) trait expression is continuous within the developmental temperature niche of this species (10–25°C) and that wing length and abdominal melanization are the best predictors of the larval abiotic environment.
  4. However, the duration and timing of cold exposure also produced significant variation in development time, morphology, and survival at cold temperatures. During a stress test assay conducted at ?5°C, although cold tolerance was greater among WM flies, long‐term exposure to cold temperatures as adults significantly improved summer morph (SM) survival, indicating that these traits are not controlled by a single mechanism.
  5. Among wild D. suzukii populations, we found that regional variation in abiotic conditions differentially affects the expression of morphological traits, although further research is needed to determine whether these differences are genetic or environmental in origin and whether thermal susceptibility thresholds differ among populations within its invaded range.
  相似文献   

11.
Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments.  相似文献   

12.
Freeze tolerance – the ability to survive internal ice formation – has evolved repeatedly in insects, facilitating survival in environments with low temperatures and/or high risk of freezing. Surviving internal ice formation poses several challenges because freezing can cause cellular dehydration and mechanical damage, and restricts the opportunity to metabolise and respond to environmental challenges. While freeze‐tolerant insects accumulate many potentially protective molecules, there is no apparent ‘magic bullet’ – a molecule or class of molecules that appears to be necessary or sufficient to support this cold‐tolerance strategy. In addition, the mechanisms underlying freeze tolerance have been minimally explored. Herein, we frame freeze tolerance as the ability to survive a process: freeze‐tolerant insects must withstand the challenges associated with cooling (low temperatures), freezing (internal ice formation), and thawing. To do so, we hypothesise that freeze‐tolerant insects control the quality and quantity of ice, prevent or repair damage to cells and macromolecules, manage biochemical processes while frozen/thawing, and restore physiological processes post‐thaw. Many of the molecules that can facilitate freeze tolerance are also accumulated by other cold‐ and desiccation‐tolerant insects. We suggest that, when freezing offered a physiological advantage, freeze tolerance evolved in insects that were already adapted to low temperatures or desiccation, or in insects that could withstand small amounts of internal ice formation. Although freeze tolerance is a complex cold‐tolerance strategy that has evolved multiple times, we suggest that a process‐focused approach (in combination with appropriate techniques and model organisms) will facilitate hypothesis‐driven research to understand better how insects survive internal ice formation.  相似文献   

13.
The mechanisms by which weedy rice (Oryza sativa f. spontanea) has adapted to endure low‐temperature stress in northern latitudes remain unresolved. In this study, we assessed cold tolerance of 100 rice varieties and 100 co‐occurring weedy rice populations, which were sampled across a broad range of climates in China. A parallel pattern of latitude‐dependent variation in cold tolerance was detected in cultivated rice and weedy rice. At the molecular level, differential cold tolerance was strongly correlated with relative expression levels of CBF cold response pathway genes and with methylation levels in the promoter region of OsICE1, a regulator of this pathway. Among all methylated cytosine sites of the OsICE1 promoter, levels of CHG and CHH methylation were found to be significantly correlated with cold tolerance among accessions. Furthermore, within many of the collection locales, weedy rice shared identical or near‐identical OsICE1 methylation patterns with co‐occurring cultivated rice. These findings provide new insights on the possible roles that methylation variation in the OsICE1 promoter may play in cold tolerance, and they suggest that weedy rice can rapidly acquire cold tolerance via methylation patterns that are shared with co‐occurring rice cultivars.  相似文献   

14.
Molecular genetic markers can be used to identify quantitative trait loci (QTL) for thermal resistance and this has allowed characterization of a major QTL for knockdown resistance to high temperature in Drosophila melanogaster. The QTL showed trade-off associations with cold resistance under laboratory conditions. However, assays of thermal tolerance conducted in the laboratory may not necessarily reflect performance at varying temperatures in the field. Here we tested if lines with different genotypes in this QTL show different thermal performance under high and low temperatures in the field using a release recapture assay. We found that lines carrying the QTL genotype for high thermal tolerance were significantly better at locating resources in the field releases under hot temperatures while the QTL line carrying the contrasting genotype were superior at cold temperatures. Further, we studied copulatory success between the different QTL genotypes at different temperatures. We found higher copulatory success in males of the high tolerance QTL genotype under hot temperature conditions, while there was no difference in females at cold temperatures. The results allow relating components of field fitness at different environmental temperatures with genotypic variation in a QTL for thermal tolerance.  相似文献   

15.
The present study examines life stage‐related variation in the thermal limits to activity and survival in an African pest, the false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Thermal tolerance, including the functional activity limits of critical thermal maxima and minima (CTmax and CTmin respectively), upper and lower lethal temperature, and the effect of heat and cold hardening (short‐term acute plasticity), is measured across a diverse range of low or high temperature stress conditions in both larvae and adults. We also report the sum of inducible and cognate forms of the amounts of heat shock protein 70 (HSP70) as an explanatory variable for changes in thermotolerance. The results show that the larvae have high variability in CTmax and CTmin at different ramping rates and low levels of basal (innate) thermal tolerance. By contrast, the adults show high basal tolerance and overall lower variability in CTmax and CTmin, indicating lower levels of phenotypic plasticity in thermotolerance. HSP70 responses, although variable, do not reflect these tolerance or survival patterns. Larvae survive across a broader range of temperatures, whereas adults remain active across a broader range of temperatures. Life stage‐related variation in thermal tolerance is most pronounced under the slowest (most ecologically‐relevant) ramping rate (0.06 °C min–1) during lower critical thermal limit experiments and least pronounced during upper thermal limit experiments. Thus, the ramping rate can hinder or enhance the detection of stage‐related variation in thermal limits to activity and survival of insects.  相似文献   

16.
Ectotherms from higher latitudes can generally perform over broader temperature ranges than tropical ectotherms. This pattern is thought to reflect trends in temperature variability: tropical ectotherms evolve to be ‘thermal specialists’ because their environment is thermally stable. However, the tropics are also hotter, and most physiological rates increase exponentially with temperature. Using a dataset spanning diverse ectotherms, we show that the temperature ranges ectotherms tolerate (the difference between lower and upper critical temperatures, and between optimum and upper critical temperatures) generally represents the same range of equivalent biological rates (e.g. metabolism) for cool‐ and warm‐adapted species, and independent of latitude or elevation. This suggests that geographical trends in temperature variability may not be the ultimate mechanism underlying latitudinal and elevational trends in thermal tolerance. Rather, we propose that tropical ectotherms can perform over a narrower range of temperatures than species from higher latitudes because the tropics are hotter.  相似文献   

17.
Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.  相似文献   

18.
19.
While many insects cannot survive the formation of ice within their bodies, a few species can. On the evolutionary continuum from freeze‐intolerant (i.e., freeze‐avoidant) to freeze‐tolerant insects, intermediates likely exist that can withstand some ice formation, but not enough to be considered fully freeze tolerant. Theory suggests that freeze tolerance should be favored over freeze avoidance among individuals that have low relative fitness before exposure to cold. For phytophagous insects, numerous studies have shown that host (or nutrition) can affect fitness and cold‐tolerance strategy, respectively, but no research has investigated whether changes in fitness caused by different hosts of polyphagous species could lead to systematic changes in cold‐tolerance strategy. We tested this relationship with the invasive, polyphagous moth, Epiphyas postvittana (Walker). Host affected components of fitness, such as larval survivorship rates, pupal mass, and immature developmental times. Host species also caused a dramatic change in survival of late‐instar larvae after the onset of freezing—from less than 8% to nearly 80%. The degree of survival after the onset of freezing was inversely correlated with components of fitness in the absence of cold exposure. Our research is the first empirical evidence of an evolutionary mechanism that may drive changes in cold‐tolerance strategies. Additionally, characterizing the effects of host plants on insect cold tolerance will enhance forecasts of invasive species dynamics, especially under climate change.  相似文献   

20.
Cold tolerance, the ability to cope with low temperature stress, is a critical adaptation in thermally variable environments. An individual's cold tolerance comprises several traits including minimum temperatures for growth and activity, ability to survive severe cold, and ability to resume normal function after cold subsides. Across species, these traits are correlated, suggesting they were shaped by shared evolutionary processes or possibly share physiological mechanisms. However, the extent to which cold tolerance traits and their associated mechanisms covary within populations has not been assessed. We measured five cold tolerance traits—critical thermal minimum, chill coma recovery, short- and long-term cold tolerance, and cold-induced changes in locomotor behavior—along with cold-induced expression of two genes with possible roles in cold tolerance (heat shock protein 70 and frost)—across 12 lines of Drosophila melanogaster derived from a single population. We observed significant genetic variation in all traits, but few were correlated across genotypes, and these correlations were sex-specific. Further, cold-induced gene expression varied by genotype, but there was no evidence supporting our hypothesis that cold-hardy lines would have either higher baseline expression or induction of stress genes. These results suggest cold tolerance traits possess unique mechanisms and have the capacity to evolve independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号