共查询到20条相似文献,搜索用时 0 毫秒
1.
YEONG DU YOO HAE JIN JEONG NAM SEON KANG JAE YOON SONG KWANG YOUNG KIM GITACK LEE JUHYOUNG KIM 《The Journal of eukaryotic microbiology》2010,57(2):145-158
ABSTRACT. To investigate the feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense (GenBank accession number=AM408889), we explored the feeding process and the kinds of prey species that P. shiwhaense is able to feed on using several different types of microscopes, including a transmission electron microscope and high‐resolution video‐microscopy. In addition, we measured the growth and ingestion rates of P. shiwhaense on its optimal algal prey Amphidinium carterae as a function of prey concentration. We also measured these parameters for edible prey at a single concentration at which the growth and ingestion rates of P. shiwhaense on A. carterae were saturated. Paragymnodinium shiwhaense feed on algal prey using a peduncle after anchoring the prey by a tow filament. Among the algal prey offered, P. shiwhaense ingested small algal species that had equivalent spherical diameters (ESDs) ≤11 μm (e.g. the prymnesiophyte Isochrysis galbana, the cryptophytes Teleaulax sp. and Rhodomonas salina, the raphidophyte Heterosigma akashiwo, and the dinoflagellates Heterocapsa rotundata and A. carterae). However, it did not feed on larger algal species that had ESDs ≥12 μm (e.g. the dinoflagellates Prorocentrum minimum, Heterocapsa triquetra, Scrippsiella trochoidea, Alexandrium tamarense, Prorocentrum micans, Gymnodinium catenatum, Akashiwo sanguinea, and Lingulodinium polyedrum) or the small diatom Skeletonema costatum. The specific growth rates for P. shiwhaense feeding upon A. carterae increased rapidly with increasing mean prey concentration before saturating at concentrations of ca. 350 ng C/ml (5,000 cells/ml). The maximum specific growth rate (i.e. mixotrophic growth) of P. shiwhaense on A. carterae was 1.097/d at 20 °C under a 14:10 h light–dark cycle of 20 μE/m2/s, while its growth rate (i.e. phototrophic growth) under the same light conditions without added prey was ?0.224/d. The maximum ingestion and clearance rates of P. shiwhaense on A. carterae were 0.38 ng C/grazer/d (5.4 cells/grazer/d) and 0.7 μl/grazer/h, respectively. The calculated grazing coefficients for P. shiwhaense on co‐occurring Amphidinium spp. was up to 0.07/h (i.e. 6.7% of the population of Amphidinium spp. was removed by P. shiwhaense populations in 1 h). The results of the present study suggest that P. shiwhaense can have a considerable grazing impact on algal populations. 相似文献
2.
To assess the effects of fluctuating prey availability on predator population dynamics and grazing impact on phytoplankton, we measured growth and grazing rates of three heterotrophic dinoflagellate species—Oxyrrhis marina, Gyrodinium dominans and Gyrodinium spirale—before and after depriving them of phytoplankton prey. All three dinoflagellate species survived long periods (> 10 d) without algal prey, coincident with decreases in predator abundance and cell size. After 1–3 wks, starvation led to a 17–57% decrease in predator cell volume and some cells became deformed and transparent. When re‐exposed to phytoplankton prey, heterotrophs ingested prey within minutes and increased cell volumes by 4–17%. At an equivalent prey concentration, continuously fed predators had ~2‐fold higher specific growth rates (0.18 to 0.55 d?1) than after starvation (?0.16 to 0.25 d?1). Maximum specific predator growth rates would be achievable only after a time lag of at least 3 d. A delay in predator growth poststarvation delays predator‐induced phytoplankton mortality when prey re‐emerges at the onset of a bloom event or in patchy prey distributions. These altered predator‐prey population dynamics have implications for the formation of phytoplankton blooms, trophic transfer rates, and potential export of carbon. 相似文献
3.
Hae Jin Jeong An Suk Lim Yeong Du Yoo Moo Joon Lee Kyung Ha Lee Tae Young Jang Kitack Lee 《The Journal of eukaryotic microbiology》2014,61(1):27-41
To investigate heterotrophic protists grazing on Symbiodinium sp., we tested whether the common heterotrophic dinoflagellates Gyrodinium dominans, Gyrodinium moestrupii, Gyrodinium spirale, Oblea rotundata, Oxyrrhis marina, and Polykrikos kofoidii and the ciliates Balanion sp. and Parastrombidinopsis sp. preyed on the free‐living dinoflagellate Symbiodinium sp. (clade E). We measured the growth and ingestion rates of O. marina and G. dominans on Symbiodinium sp. as a function of prey concentration. Furthermore, we compared the results to those obtained for other algal prey species. In addition, we measured the growth and ingestion rates of other predators at single prey concentrations at which these rates of O. marina and G. dominans were saturated. All predators tested in the present study, except Balanion sp., preyed on Symbiodinium sp. The specific growth rates of O. marina and G. dominans on Symbiodinium sp. increased rapidly with increasing mean prey concentration < ca. 740–815 ng C/ml (7,400–8,150 cells/ml), but became saturated at higher concentrations. The maximum growth rates of O. marina and G. dominans on Symbiodinium sp. (0.87 and 0.61/d) were much higher than those of G. moestrupii and P. kofoidii (0.11 and 0.04/d). Symbiodinium sp. did not support positive growth of G. spirale, O. rotundata, and Parastrombidinopsis sp. However, the maximum ingestion rates of P. kofoidii and Parastrombidinopsis sp. (6.7–10.0 ng C/predator/d) were much higher than those of O. marina and G. dominans on Symbiodinium sp. (1.9–2.1 ng C/predator/d). The results of the present study suggest that Symbiodinium sp. may increase or maintain the populations of some predators. 相似文献
4.
HAE JIN JEONG SOO KYEONG KIM JAE SEONG KIM SEONG TAEK KIM YEONG DU YOO JOO YIH YOON 《The Journal of eukaryotic microbiology》2001,48(3):298-308
We investigated growth rates, grazing rates, and prey selection of Polykrikos kofoidii when feeding on several species of red-tide and/or toxic dinoflagellates. Polykrikos kofoidii ingested all prey species used in this study, exhibiting positive growth on Lingulodinium polyedrum, Scrippsiella trochoidea, Ceratium furca, Gymnodinium catenatum, Gyrodinium impudicum, Prorocentrum micans, and the toxic dinoflagellate Amphidinium carterae, but not on P. minimum. Specific growth rates of P. kofoidii increased rapidly with increasing density of L. polyedrum, S. trochoidea, C. furca, and G. catenatum before saturating between 500-2,000 ng C ml(-1). Specific growth rates increased continuously when P. kofoidii was fed the other prey species. Maximum specific growth rates of P. kofoidii on G. catenatum (1.12 d(-1)), S. trochoidea (0.97 d(-1)), and L. polyedrum (0.83 d(-1)) were higher than those on C. furca (0.35 d(-1)), A. carterae (0.10 d(-1)), P. micans (0.06 d(-1)), G. impudicum (0.06 d(-1)), and P. minimum (-0.03 d(-1)). Threshold prey concentrations (where net growth = 0) were 54-288 ng C ml(-1). Maximum ingestion and clearance rates of P. kofoidii on these dinoflagellates were 5-24 ng C pseudocolony(-1) d(-1) and 1.0-5.9 microl pseudocolony(-1) h(-1), respectively. Polykrikos kofoidii strongly selected L. polyedrum over S. trochoidea in prey mixtures. Polykrikos kofoidii exhibited higher maximum growth, ingestion, and clearance rates than previously reported for the mixotrophic dinoflagellate Fragilidium cf. mexicanum or the heterotrophic dinoflagellates Protoperidinium cf. divergens and P. crassipes, when grown on the same prey species. Grazing coefficients calculated by combining field data on abundances of Polykrikos spp. and co-occurring red-tide dinoflagellate prey with laboratory data on ingestion rates obtained in the present study suggest that Polykrikos spp. sometimes have a considerable grazing impact on prey populations. 相似文献
5.
Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria 总被引:1,自引:0,他引:1
Jeong HJ Seong KA Yoo YD Kim TH Kang NS Kim S Park JY Kim JS Kim GH Song JY 《The Journal of eukaryotic microbiology》2008,55(4):271-288
ABSTRACT. We investigated the feeding of the small heterotrophic dinoflagellates (HTDs) Oxyrrhis marina , Gyrodinium cf. guttula , Gyrodinium sp., Pfiesteria piscicida , and Protoperidinium bipes on marine heterotrophic bacteria. To investigate whether they are able to feed on bacteria, we observed the protoplasm of target heterotrophic dinoflagellate cells under an epifluorescence microscope and transmission electron microscope. In addition, we measured ingestion rates of the dominant heterotrophic dinoflagellate, Gyrodinium spp., on natural populations of marine bacteria (mostly heterotrophic bacteria) in Masan Bay, Korea in 2006–2007. Furthermore, we measured the ingestion rates of O. marina , G . cf. guttula , and P. piscicida on bacteria as a function of bacterial concentration under laboratory conditions. All HTDs tested were able to feed on a single bacterium. Oxyrrhis marina and Gyrodinium spp. intercepted and then ingested a single bacterial cell in feeding currents that were generated by the flagella of the predators. During the field experiments, the ingestion rates and grazing coefficients of Gyrodinium spp. on natural populations of bacteria were 14–61 bacteria/dinoflagellate/h and 0.003–0.972 day−1 , respectively. With increasing prey concentration, the ingestion rates of O. marina , G . cf. guttula , and P. piscicida on bacteria increased rapidly at prey concentrations of ca 0.7–2.2 × 106 cells/ml, but increased only slowly or became saturated at higher prey concentrations. The maximum ingestion rate of O. marina on bacteria was much higher than those of G . cf. guttula and P. piscicida . Bacteria alone supported the growth of O. marina . The results of the present study suggest that some HTDs may sometimes have a considerable grazing impact on populations of marine bacteria, and that bacteria may be important prey. 相似文献
6.
Muylaert Koenraad Van Mieghem Riet Sabbe Koen Tackx Micky Vyverman Wim 《Hydrobiologia》2000,432(1-3):25-36
Freshwater tidal estuaries comprise the most upstream reaches of estuaries and are often characterised by the presence of dense bacterial and algal populations which provide a large food source for bacterivorous and algivorous protists. In 1996, the protistan community in the freshwater tidal reaches of the Schelde estuary was monitored to evaluate whether these high food levels are reflected in a similarly high heterotrophic protistan biomass. Protistan distribution patterns were compared to those of metazoan zooplankton to evaluate the possible role of top-down regulation of protists by metazoans. Apart from the algivorous sarcodine Asterocaelum, which reached high densities in summer, heterotrophic protistan biomass was dominated by ciliates and, second in importance, heterotrophic nanoflagellates (HNAN). HNAN abundance was low (annual average 2490 cells ml–1) and did not display large seasonal variation. It is hypothesised that HNAN were top-down controlled by oligotrich ciliates throughout the year and by rotifers in summer. Ciliate abundance was generally relatively high (annual average 65 cells ml–1) and peaked in winter (maximum 450 cells ml–1). The decline of ciliate populations in summer was ascribed to grazing by rotifers, which developed dense populations in that season. In winter, ciliate populations were probably regulated `internally' by carnivorous ciliates (haptorids and Suctoria). Our observations suggest that, in this type of productive ecosystems, the microbial food web is mainly top-down controlled rather than regulated by food availability. 相似文献
7.
Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom‐up and top‐down controls 下载免费PDF全文
Xosé Anxelu G. Morán Josep M. Gasol Massimo C. Pernice Jean‐François Mangot Ramon Massana Elena Lara Dolors Vaqué Carlos M. Duarte 《Global Change Biology》2017,23(9):3956-3964
Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom‐up), predation and viral lysis (top‐down) or temperature will help in future carbon cycling predictions. We conducted an extensive survey across subtropical and tropical waters of the Atlantic, Indian and Pacific Oceans during the Malaspina 2010 Global Circumnavigation Expedition and assessed indices for these three types of controls at 109 stations (mostly from the surface to 4,000 m depth). Temperature control was approached by the apparent activation energy in eV (ranging from 0.46 to 3.41), bottom‐up control by the slope of the log‐log relationship between biomass and production rate (ranging from ?0.12 to 1.09) and top‐down control by an index that considers the relative abundances of heterotrophic nanoflagellates and viruses (ranging from 0.82 to 4.83). We conclude that temperature becomes dominant (i.e. activation energy >1.5 eV) within a narrow window of intermediate values of bottom‐up (0.3–0.6) and top‐down 0.8–1.2) controls. A pervasive latitudinal pattern of decreasing temperature regulation towards the Equator, regardless of the oceanic basin, suggests that the impact of global warming on marine microbes and their biogeochemical function will be more intense at higher latitudes. Our analysis predicts that 1°C ocean warming will result in increased biomass of heterotrophic prokaryoplankton only in waters with <26°C of mean annual surface temperature. 相似文献
8.
Primary productivity, pico‐, nano‐, microplankton and key environmental factors were studied in a eutrophic coastal area of the Aegean Sea during the winter – spring period. Primary productivity reached high values and showed similar trends of change to those of nanophytoplankton abundance. Nano‐ and microplankton cell densities showed high variability while picoplankton abundance was kept relatively stable. Diatoms dominated nanophytoplankton for most of the winter – spring period while a shift to dinoflagellates was initiated with the development of thermal stratification in late spring. Ciliates and heterotrophic dinoflagellates reached high densities in contrast to heterotrophic nanoflagellates. Our results emphasize the close relation between grazer densities and bacteria, cyanobacteria and nanoplanktic algal changes in this eutrophic coastal area of the Mediterranean. 相似文献
9.
Question: Are flower production and associated phenological variables (onset, end, duration, and three measures of flowering synchrony) randomly distributed in space or, alternatively, is there a neighbourhood structure (spatial autocorrelation) in the values of these variables? To which extent does spatial autocorrelation affect the correlation tests between phenological traits? Location: A tree savanna reserve in Southeastern Brazil (22°15′S,47°08′W). Methods: The flowering season of Chromolaena odorata was followed for all (96) individuals in a completely mapped area of 3000 m2. The phenological traits were estimated by counting flower heads in anthesis on individual plants every seven days for 14 weeks. Results: Flowering time was unimodally distributed, but with different peak dates depending on whether individual flower heads or plants were counted. Three phenological traits and canopy closure above the plants showed some degree of spatial autocorrelation, which caused loss of up to 35% of degrees of freedom in nine of 36 correlation tests. Such a decrease in the degrees of freedom resulted in loss of significance for correlations in three pairs of variables. Conclusions: We hypothesize that the spatial autocorrelation in phenological traits between C. odorata neighbours may be driven by genetic similarity among neighbouring plants and/or spatial structuring of environmental factors. Because location and distance between samples may affect their statistical independence, we suggest that spatial autocorrelation should be taken into account in future studies of plant phenology, e.g. by using effective sample size in statistical tests. 相似文献
10.
Kenneth N. Mertens Aika Yamaguchi Yoshihito Takano Vera Pospelova Martin J. Head Taoufik Radi Anna J. Pieńkowski Anne de Vernal Hisae Kawami Kazumi Matsuoka 《The Journal of eukaryotic microbiology》2013,60(6):545-563
The cyst–theca relationship of Protoperidinium fukuyoi n. sp. (Dinoflagellata, Protoperidiniaceae) is established by incubating resting cysts from estuarine sediments off southern Vancouver Island, British Columbia, Canada, and San Pedro Harbor, California, USA. The cysts have a brown‐coloured wall, and are characterized by a saphopylic archeopyle comprising three apical plates, the apical pore plate and canal plate; and acuminate processes typically arranged in linear clusters. We elucidate the phylogenetic relationship of P. fukuyoi through large and small subunit (LSU and SSU) rDNA sequences, and also report the SSU of the cyst‐defined species Islandinium minutum (Harland & Reid) Head et al. 2001. Molecular phylogenetic analysis by SSU rDNA shows that both species are closely related to Protoperidinium americanum (Gran & Braarud 1935) Balech 1974. Large subunit rDNA phylogeny also supports a close relationship between P. fukuyoi and P. americanum. Three subgroups in total are further characterized within the Monovela group. The cyst of P. fukuyoi shows a wide geographical range along the coastal tropical to temperate areas of the North‐east Pacific, its distribution reflecting optimal summer sea‐surface temperatures of ~14–18 °C and salinities of 22–34 psu. 相似文献
11.
12.
Minna J. Hsu Chien‐Ching Kao Govindasamy Agoramoorthy 《American journal of primatology》2009,71(3):214-222
Ecotourism involving feeding wildlife has raised public attention and is a controversial issue, especially concerning nonhuman primates. Between July 2002 and April 2005, the behavior of monkeys and tourists was collected through scan samplings, focal samplings and behavior samplings at the Shou‐Shan Nature Park located in Taiwan's second largest city—Kaohsiung. In addition, the number of tourists and monkeys was counted in different hours and places within the park. Four hundred visitors were interviewed using a questionnaire to gather data on sex, age, purpose and frequency of visit to the park. The number of tourists was significantly higher during weekends than in weekdays in all locations. Humans dominated in the initiation of interspecies interactions—the overall ratio of human‐initiated and monkey‐initiated interactions was 2.44:1. Human–monkey conflicts accounted for only 16.4% of the total interactions (n=2,166), and adult human males and adult male macaques participated in higher rates than other age/sex groups in these conflicts. Visitors showed more affiliative behavior (15.9%) than agonistic behavior (8%) toward the macaques. In response to visitors' threat or attack, the Formosan macaques mostly showed submissive behavior with bared teeth, squealed or ran away to avoid confrontation (69.1%)—only few responded with counteraggression (18.7%). This study for the first time provided evidence that food provisioning increased both the frequency and duration of aggression among Formosan macaques (P<0.001). During food provisioning, the average frequency and the duration of agonistic events of macaques were more than 4 times higher compared with those without food provisioning. The average frequency of food provision by tourists was 0.73 times/hr—more than twice the incident that monkeys grabbed the food from tourists (0.34 times/hr). If people refrain from feeding monkeys and destroying the city park's natural vegetation, monkeys can be used to educate public about nature conservation in an urban setting. Am. J. Primatol. 71:214–222, 2009. © 2008 Wiley‐Liss, Inc. 相似文献
13.
14.
Aims: To determine the potential of the plant‐parasitic nematode Meloidogyne javanica to serve as a temporary reservoir for Escherichia coli. Methods and Results: The adhesion to and persistence of E. coli on the surface of M. javanica were evaluated at different times and temperatures. A pure culture of green fluorescent protein (GFP) tagged E. coli was mixed with ca. 1000 J2 M. javanica for 2 h at 25°C. The nematodes were then washed and the rate of the adhesion of the bacteria to the nematodes was determined by counting the viable nematode‐associated E. coli, and by fluorescence microscopy. A dose‐dependent adhesion rate was observed only at a bacterium to nematode ratio of 104–106 : 1. The adhesion of E. coli to the nematodes was also tested over a 24 h‐period at 4°C, 25°C and 37°C. At 4°C and 37°C, maximal adhesion was observed at 5 h; whereas at 25°C, maximal adherence was observed at 8 h. Survival experiments showed that the bacteria could be detected on the nematodes for up to 2 weeks when incubated at 4°C and 25°C, but not at 37°C. Conclusions: Under laboratory conditions, at 4°C and 25°C, M. javanica could serve as a temporary vector for E. coli for up to 2 weeks. Significance and Impact of the Study: These findings support the hypothesis that, in the presence of high concentrations of E. coli, M. javanica might serve as a potential vehicle for the transmission of food‐borne pathogens. 相似文献
15.
Eric Sulpice Shunli Ding Béatrice Muscatelli‐Groux Mathieu Bergé Zhong Chao Han Jean Plouet Gérard Tobelem Tatyana Merkulova‐Rainon 《Biology of the cell / under the auspices of the European Cell Biology Organization》2009,101(9):525-539
Background information. Endothelial cells play a major role in angiogenesis, the process by which new blood vessels arise from a pre‐existing vascular bed. VEGF‐A (vascular endothelial growth factor‐A) is a key regulator of angiogenesis during both development and in adults. HGF (hepatocyte growth factor) is a pleiotropic cytokine that may promote VEGF‐A‐driven angiogenesis, although the signalling mechanisms underlying this co‐operation are not completely understood. Results. We analysed the effects of the combination of VEGF‐A and HGF on the activation of VEGFR‐2 (VEGF receptor‐2) and c‐met receptors, and on the stimulation of downstream signalling pathways in endothelial cells. We found that VEGFR‐2 and c‐met do not physically associate and do not transphosphorylate each other, suggesting that co‐operation involves signalling events more distal from receptor activation. We demonstrate that the VEGF isoform VEGF‐A165 and HGF stimulate a similar set of MAPKs (mitogen‐activated protein kinases), although the kinetics and strengths of the activation differ depending on the growth factor and pathway. An enhanced activation of the signalling was observed when endothelial cells were stimulated by the combination of VEGF‐A165 and HGF. Moreover, the combination of VEGF‐A and HGF results in a statistically significant synergistic activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) and p38 kinases. We demonstrated that VEGF‐A165 and HGF activate FAK (focal adhesion kinase) with different kinetics and stimulate the recruitment of phosphorylated FAK to different subsets of focal adhesions. VEGF‐A165 and HGF regulate distinct morphogenic aspects of the cytoskeletal remodelling that are associated with the preferential activation of Rho or Rac respectively, and induce structurally distinct vascular‐like patterns in vitro in a Rho‐ or Rac‐dependent manner. Conclusions. Under angiogenic conditions, combining VEGF‐A with HGF can promote neovascularization by enhancing intracellular signalling and allowing more finely regulated control of the signalling molecules involved in the regulation of the cytoskeleton and cellular migration and morphogenesis. 相似文献
16.
We have examined the effects of herbivore diversity on parasitoid community persistence and stability, mediated by nonspecific information from herbivore‐infested plants. First, we investigated host location and patch time allocation in the parasitoid Cotesia glomerata in environments where host and/or nonhost herbivores were present on Brassica oleracea leaves. Parasitoids were attracted by infochemicals from leaves containing nonhost herbivores. They spent considerable amounts of time on such leaves. Thus, when information from the plant is indistinct, herbivore diversity is likely to weaken interaction strengths between parasitoids and hosts. In four B. oleracea fields, all plants contained herbivores, often two or more species. We modelled parasitoid–herbivore communities increasing in complexity, based on our experiments and field data. Increasing herbivore diversity promoted the persistence of parasitoid communities. However, at a higher threshold of herbivore diversity, parasitoids became extinct due to insufficient parasitism rates. Thus, diversity can potentially drive both persistence and extinctions. 相似文献
17.
Interactions between range‐expanding tropical fishes and the northern Gulf of Mexico red snapper Lutjanus campechanus 下载免费PDF全文
Experimental investigation of the intensity of potential competitive interactions among increasingly abundant tropically‐associated grey Lutjanus griseus and lane snapper Lutjanus synagris and resident northern Gulf of Mexico (nGOM) red snapper Lutjanus campechanus was undertaken in large outdoor mesocosms. In pair‐wise interaction trials, compared with L. synagris, L. campechanus demonstrated significantly increased roving behaviour and predatory activity. While no significant difference in these activities was observed between L. campechanus and L. griseus, when all three snappers (Lutjanidae) were grouped together L. campechanus swimming activity significantly decreased in the presence of both tropically‐associated species. Overall, L. campechanus were more active and aggressive predators and appear to be competitively resistant to L. griseus and L. synagris. As lower latitude species have continued to become increasingly prevalent in nGOM habitats and regional warming continues to affect resident reef‐associated fishes, these findings contribute to the assessment of the effects of warming‐related species shifts upon nGOM fishes and document current partial resilience of L. campechanus to climate‐related expansions of tropical confamilials. 相似文献
18.
The physicochemical and microbial characteristics of some medium-temperature hydrotherms of Kamchatka Peninsula (Uzon caldera), habitats of the hoverfly Eristalinus sepulchralis larvae, were studied. In these hydrothermal vents, the larvae were found to use various prokaryotic and eukaryotic microorganisms as a nutrient substrate. The rates of chemo-and photosynthetic activity of the suspended microbial communities inhabiting the hydrotherms and supporting the existence of larvae were measured. By light and electron microscopy, exo-and endosymbiotic prokaryotic microorganisms were revealed in the digestive and respiratory systems of larvae. 相似文献
19.
20.
N. Muttucumaru S.J. Powers J.S. Elmore A. Briddon D.S. Mottram N.G. Halford 《The Annals of applied biology》2014,164(2):286-300
Free amino acids and reducing sugars participate in the Maillard reaction during high‐temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide‐forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide‐forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety‐dependent impact on sugar and amino acid concentrations and acrylamide‐forming potential. 相似文献