首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel genus and species within the order Glissmonadida (Cercozoa, Rhizaria), Saccharomycomorpha psychra n. g., n. sp., is described from lichen in the Ny-Ålesund region (High Arctic) and moss in the Fildes peninsula of King George Island (Maritime Antarctica). Cells were spherical and did not appear to present flagella in organic-rich Potato Dextrose Agar medium where they were able to feed osmotrophically. Molecular phylogenetic analyses based on 18S rRNA gene sequence demonstrated that Saccharomycomorpha psychra belong to “clade T” within the order Glissmonadida (Cercozoa, Rhizaria). All three investigated strains could grow at 4 °C and had an optimum growth temperature of 12 °C, 20 °C, and 20 °C, while a maximum growth temperature of 20 °C, 20 °C, and 25 °C, respectively. In conclusion, we established the phenotypic identity of “clade T,” which until now was exclusively detected by environmental sequences, and erect a new family Saccharomycomorphidae for “clade T.” Nomenclatural, morphological and ecological aspects of this novel species are discussed.  相似文献   

2.
Thecofilosea is a class in Cercozoa (Rhizaria) comprising mainly freshwater‐inhabiting algivores. Recently, numerous isolates of thecofilosean amoebae have been cultured and were characterized by an integrated morphological and molecular approach. As attempts to establish a culture of Lecythium mutabilis repeatedly failed, it was not yet investigated by molecular means. We isolated single cells of L. mutabilis directly from their habitat and successfully sequenced the V4 region of their SSU rDNA. Phylogenetic analyses showed that L. mutabilis is not directly related to the genus Lecythium and instead branches within the Fiscullidae (Tectofilosida, Thecofilosea). Accordingly, we transfer the species L. mutabilis to a novel genus Omnivora gen. nov.  相似文献   

3.
  • Natural hybridisation has significant ecological, genetic and evolutionary consequences altering morphological and chemical characters of individuals. Quercus glabrescens, Q. rugosa and Q. obtusata are white oak species well separated by their morphological characters when they occur in allopatry in Mexican temperate forests. However, in sympatry, individuals with atypical morphology have been observed, suggesting hybridisation events.
  • In this study, we determined, with microsatellites and secondary metabolites, if interspecific gene flow occurs when these three oak species coexist in sympatry. In total, 180 individuals belonging to seven populations [three allopatric (one for each parental species) and four sympatric sites] were analysed.
  • Allopatric populations represent well‐defined genetic groups and the sympatric populations showed genetic evidence of hybridisation between Q. glabrescens × Q. rugosa and Q. glabrescens × Q. obtusata. The hybridisation percentage varied between sites and combination of involved species. We registered the presence of unique flavonoid compounds for Q. glabrescens (caffeic acid and flavonol 2), Q. rugosa (flavonol 5) and Q. obtusata (flavonol 1). Three compounds (quercetin rhamnoside, flavonol 3 and alkyl coumarate) were expressed in all taxa. Finally, the hybrid genotypes identified in this study (Q. glabrescens × Q. rugosa and Q. glabrescens × Q. obtusata) showed specific chemical profiles, resulting from a combination of those of their parental species.
  • These results show that hybridisation events between these oak species alter chemical expression of secondary metabolites, creating a mosaic of resources and conditions that provide the substrate for different combinations of foliar‐associated species such as herbivores, endophytic fungi or epiphyte plants.
  相似文献   

4.

Background  

Comparative morphological studies and environmental sequencing surveys indicate that marine benthic environments contain a diverse assortment of microorganisms that are just beginning to be explored and characterized. The most conspicuous predatory flagellates in these habitats range from about 20–150 μm in size and fall into three major groups of eukaryotes that are very distantly related to one another: dinoflagellates, euglenids and cercozoans. The Cercozoa is a diverse group of amoeboflagellates that cluster together in molecular phylogenies inferred mainly from ribosomal gene sequences. These molecular phylogenetic studies have demonstrated that several enigmatic taxa, previously treated as Eukaryota insertae sedis, fall within the Cercozoa, and suggest that the actual diversity of this group is largely unknown. Improved knowledge of cercozoan diversity is expected to help resolve major branches in the tree of eukaryotes and demonstrate important cellular innovations for understanding eukaryote evolution.  相似文献   

5.
Prokaryotic epiphytes on leaves of three seagrass species, Thalassodendron ciliatum, Thalassia hemprichii, and Cymodocea rotundata, from two Kenyan coastal sites, Nyali (a high‐nutrient site) and Vipingo (a low‐nutrient site), were characterized genetically and morphologically. Denaturing gradient gel electrophoresis (DGGE) and clone libraries of PCR‐amplified 16S rRNA gene fragments were used to study prokaryotes associated with these seagrasses. In general, the epiphytic coverage was greater in the high‐nutrient site, while the microbial diversity was linked to seagrass species rather than the study sites. Cytophaga–Flavobacteria–Bacteroides (CFB) were associated with T. ciliatum and T. hemprichii mainly in the nutrient‐poor site, while α‐, β‐, and γ‐proteobacteria were associated with all three species at the two study sites. Some bacteria phylotypes were closely related to sequences of microorganisms previously recovered from wastewaters or other contaminated sources, indicating the influx of land‐based wastes into these coastal lagoon ecosystems. The abundance of potential nitrogen (N2)‐fixing cyanobacteria on C.  rotundata, particularly in the low‐nutrient site, suggested that this association may have been acquired to meet N demands. Unicellular cyanobacteria were dominant and associated with C. rotundata and T. hemprichii (with those on T. hemprichii being closely related to cyanobacterial symbiotic species), while T. ciliatum was almost devoid of cyanobacterial associations at the same site (Nyali), which suggests specificity in the cyanobacteria–seagrass associations. The abundance of prokaryotic epiphytes was considered to be linked to water depth and tidal exposure.  相似文献   

6.
Oaks (Quercus: Fagaceae) commonly interbreed yet retain their morphological, genetic and ecological distinctiveness. Post‐zygotic isolation mechanisms, such as ecologically dependent selection on adaptive loci, may therefore limit introgression. To test this hypothesis, we quantified hybridization and genetic divergence across the contact zone of four red oaks (Quercus section Lobatae) in the Great Lakes region of North America using a suite of 259 amplified fragment length polymorphisms and 27 genic and genomic microsatellite markers. First, we identified hybrids using genetic structure analysis and confirmed the reliability of our assignments via simulations. Then, we identified candidate loci for species maintenance with three complementary tests for selection and obtained partial gene sequences linked to an outlier locus and three other loci. We detected evidence of recent hybridization among all species and considerable gene flow between Q. ellipsoidalis and Q. velutina. Overall, c. 20% of Q. velutina had recent ancestry from Q. ellipsoidalis, whereas nearly 30% of Q. ellipsoidalis had a Q. velutina ancestor. Most loci were negligibly to weakly differentiated among species, but two gene‐linked microsatellites deviated significantly from neutral expectations in multiple, complementary outlier tests. Both outlier loci were located in the same 15‐cM bin on an existing Q. robur linkage map, a region under divergent selection in other oak species. Adaptive loci in this highly differentiated genomic region may contribute to ecological divergence among species and limit introgression.  相似文献   

7.
Morphological identification methods do not provide reliable and meaningful species identifications for taxa where morphological differences among distinct species are either absent or overlooked (i.e., cryptic species). For example, due to the minute nature of the morphological characters used to delineate diaptomid copepod species and the apparent potential for copepod speciation to occur with little or no morphological change (i.e., morphological stasis), morphological identifications of diaptomid species may not adequately capture their true species diversity. Here, we present results from a geographic survey of mtDNA sequences from populations across the geographic ranges of four North American diaptomid species—Leptodiaptomus minutus, Skistodiaptomus pallidus, Skistodiaptomus reighardi, and Onychodiaptomus sanguineus. Shallow mitochondrial DNA sequence divergences (maximum of 1.1%) among haplotypes of L. minutus from across its geographic range suggest that current morphological identification techniques reliably identify this species. In contrast, we found large mitochondrial DNA sequence divergences (14–22%) among populations within the currently recognized morphospecies of S. pallidus, S. reighardi, and O. sanguineus. However, pairwise sequence divergences within four distinct S. pallidus clades and within populations of S. reighardi and O. sanguineus were similarly low (maximum of 1.5%) as found within L. minutus as a whole. Thus, the S. pallidus, S. reighardi, and O. sanguineus morphospecies may be considered best as cryptic species complexes. Our study therefore indicates that morphological identifications, while sufficient for some species, likely underestimate the true species diversity of diaptomid copepods. As such, we stress the need for extensive taxonomic revision that integrates genetic, morphological, reproductive, and ecological analyses of this diverse and important group of freshwater zooplankton. Furthermore, we believe an extensive taxonomic revision will shed important insight into major questions regarding the roles of geography, phylogeny, and habitat on the frequency of cryptic species on earth. Handling editor: S. I. Dodson  相似文献   

8.
Species in the genus Gracilaria that display conspicuously flattened vegetative morphologies are a taxonomically challenging group of marine benthic red algae. This is a result of their species richness, morphological similarity, and broad phenotypic plasticity. Within this group, the Gracilaria domingensis complex is one of the most common, conspicuous, and morphologically variable species along the tropical western Atlantic Ocean. Previous research has identified that members of this complex belong to two distantly related clades. However, despite this increased phylogentic resolution, species delimitations within each of these clades remain unclear. Our study assessed the species diversity within this difficult complex using morphological and molecular data from three genetic markers (cox1, UPA, and rbcL). We additionally applied six single‐marker species delimitation methods (SDM: ABGD, GMYCs, GMYCm, SPN, bPTP, and PTP) to rbcL, which were largely in agreement regarding species delimitation. These results, combined with our analysis of morphology, indicate that the G. domingensis complex includes seven distinct species, each of which are not all most closely related: G. cervicornis; a ressurected G. ferox; G. apiculata subsp. apiculata; a new species, Gracilaria baiana sp. nov.; G. intermedia subsp. intermedia; G. venezuelensis; and G. domingensis sensu stricto, which includes the later heterotypic synonym, G. yoneshigueana. Our study demonstrates the value of multipronged strategies, including the use of both molecular and morphological approaches, to decipher cryptic species of red algae.  相似文献   

9.
DNA barcoding has proved difficult in a number of woody plant genera, including the ecologically important oak genus Quercus. In this study, we utilized restrictionsite‐associated DNA sequencing (RAD‐seq) to develop an economical single nucleotide polymorphism (SNP) DNA barcoding system that suffices to distinguish eight common, sympatric eastern North American white oak species. Two de novo clustering pipelines, PyRAD and Stacks, were used in combination with postclustering bioinformatic tools to generate a list of 291 potential SNPs, 80 of which were included in a barcoding toolkit that is easily implemented using MassARRAY mass spectrometry technology. As a proof‐of‐concept, we used the genotyping toolkit to infer potential hybridization between North American white oaks transplanted outside of their native range (Q. michauxii, Q. montana, Q muehlenbergii/Q. prinoides, and Q. stellata) into a horticultural collection surrounded by natural forests of locally native trees (Q. alba and Q. macrocarpa) in the living collection at The Morton Arboretum (Lisle, IL, USA). Phylogenetic and clustering analyses suggested low rates of hybridization between cultivated and native species, with the exception of one Q. michauxii mother tree, the acorns of which exhibited high admixture from either Q. alba or Q. stellata and Q. macrocarpa, and a hybrid between Q. stellata that appears to have backcrossed almost exclusively to Q. alba. Together, RAD‐seq and MassARRAY technologies allow for efficient development and implementation of a multispecies barcode for one of the more challenging forest tree genera.  相似文献   

10.

Background  

Analysis of interspecific gene flow is crucial for the understanding of speciation processes and maintenance of species integrity. Oaks (genus Quercus, Fagaceae) are among the model species for the study of hybridization. Natural co-occurrence of four closely related oak species is a very rare case in the temperate forests of Europe. We used both morphological characters and genetic markers to characterize hybridization in a natural community situated in west-central Romania and which consists of Quercus robur, Q. petraea, Q. pubescen s, and Q. frainetto, respectively.  相似文献   

11.
We performed a comparison of molecular and morphological diversity in a freshwater colonial genus Synura (Chrysophyceae, Stramenopiles), using the island of Newfoundland (Canada) as a case study. We examined the morphological species diversity in collections from 79 localities, and compared these findings to diversity based on molecular characters for 150 strains isolated from the same sites. Of 27 species or species-level lineages identified, only one third was recorded by both molecular and morphological techniques, showing both approaches are complementary in estimating species diversity within this genus. Eight taxa, each representing young evolutionary lineages, were recovered only by sequencing of isolated colonies, whereas ten species were recovered only microscopically. Our complex investigation, involving both morphological and molecular examinations, indicates that our knowledge of Synura diversity is still poor, limited only to a few well-studied areas. We revealed considerable cryptic diversity within the core S. petersenii and S. leptorrhabda lineages. We further resolved the phylogenetic position of two previously described taxa, S. kristiansenii and S. petersenii f. praefracta, propose species-level status for S. petersenii f. praefracta, and describe three new species, S. vinlandica, S. fluviatilis, and S. cornuta. Our findings add to the growing body of literature detailing distribution patterns observed in the genus, ranging from cosmopolitan species, to highly restricted taxa, to species such as S. hibernica found along coastal regions on multiple continents. Finally, our study illustrates the usefulness of combining detailed morphological information with gene sequence data to examine species diversity within chrysophyte algae.  相似文献   

12.
Introgression may lead to discordant patterns of variation among loci and traits. For example, previous phylogeographic studies on the genus Quasipaa detected signs of genetic introgression from genetically and morphologically divergent Quasipaa shini or Quasipaa spinosa. In this study, we used mitochondrial and nuclear DNA sequence data to verify the widespread introgressive hybridization in the closely related species of the genus Quasipaa, evaluate the level of genetic diversity, and reveal the formation mechanism of introgressive hybridization. In Longsheng, Guangxi Province, signs of asymmetrical nuclear introgression were detected between Quasipaa boulengeri and Q. shini. Unidirectional mitochondrial introgression was revealed from Q. spinosa to Q. shini. By contrast, bidirectional mitochondrial gene introgression was detected between Q. spinosa and Q. shini in Lushan, Jiangxi Province. Our study also detected ancient hybridizations between a female Q. spinosa and a male Q. jiulongensis in Zhejiang Province. Analyses on mitochondrial and nuclear genes verified three candidate cryptic species in Q. spinosa, and a cryptic species may also exist in Q. boulengeri. However, no evidence of introgressive hybridization was found between Q. spinosa and Q. boulengeri. Quasipaa exilispinosa from all the sampling localities appeared to be deeply divergent from other communities. Our results suggest widespread introgressive hybridization in closely related species of Quasipaa and provide a fundamental basis for illumination of the forming mechanism of introgressive hybridization, classification of species, and biodiversity assessment in Quasipaa.  相似文献   

13.
The whitefly Bemisia tabaci is a pest of many agricultural and ornamental crops worldwide and particularly in Africa. It is a complex of cryptic species, which is extremely polyphagous with hundreds of host plants identified around the world. Previous surveys in western Africa indicated the presence of two biotypes of the invasive MED species (MED‐Q1 and MED‐Q3) living in sympatry with the African species SSA and ASL. This situation constitutes one of the rare cases of local coexistence of various genetic entities within the B. tabaci complex. In order to study the dynamics of the distribution and abundance of genetic entities within this community and to identify potential factors that could contribute to coexistence, we sampled B. tabaci populations in Burkina Faso in 2015 and 2016 on various plants, and also their parasitoids. All four genetic entities were still recorded, indicating no exclusion of local species by the MED species. While B. tabaci individuals were found on 55 plant species belonging to eighteen (18) families showing the high polyphagy of this pest, some species/biotypes exhibited higher specificity. Two parasitoid species (Eretmocerus mundus and Encarsia vandrieschei) were also recorded with Emundus being predominant in most localities and on most plants. Our data indicated that whitefly abundance, diversity, and rate of parasitism varied according to areas, plants, and years, but that parasitism rate was globally highly correlated with whitefly abundance suggesting density dependence. Our results also suggest dynamic variation in the local diversity of B. tabaci species/biotypes from 1 year to the other, specifically with MED‐Q1 and ASL species. This work provides relevant information on the nature of plant–B. tabaci‐parasitoid interactions in West Africa and identifies that coexistence might be stabilized by niche differentiation for some genetic entities. However, MED‐Q1 and ASL show extensive niche overlap, which could ultimately lead to competitive exclusion.  相似文献   

14.
Adults of the invasive goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), consumed foliar weight in no‐choice feeding tests of, in descending order, California black oak Quercus kelloggii Newb., Engelmann oak, Quercus engelmannii Greene, coast live oak, Quercus agrifolia Née, and canyon live oak, Quercus chrysolepis Liebm. (Fagaceae). Furthermore, significantly more foliar area was consumed of Q. kelloggii than of Q. chrysolepis. In dual‐choice feeding tests with isolated leaf disks, A. auroguttatus consumed significantly more foliar weight and area of Q. kelloggii relative to the other three oak species, and more foliar weight of Q. agrifolia than of Q. chrysolepis. In dual‐choice feeding tests with leaves on small branches, A. auroguttatus consumed more foliar weight of Q. kelloggii than of Q. engelmannii and Q. agrifolia. Thus, multiple experiments suggested that adults of A. auroguttatus preferred the foliage of Q. kelloggii over that of the other three oak species, and among the other three species they did not appear to have a strong feeding preference. Factor analysis reduced the quantities of 13 foliar nutrients into two new variables (factor 1 and factor 2). Factor 1 was weighted heavily on the quantities of nitrogen, sulfur, phosphorus, potassium, zinc, and copper, whereas factor 2 was weighted heavily on the quantities of zinc, iron, and aluminum. Factor 1 varied by oak species, with Q. kelloggii having a higher factor 1 nutrient content than the other three species. Factor 2 response was higher in Q. kelloggii, Q. agrifolia, and Q. engelmannii than in Q. chrysolepis. The collective effects of four macronutrients (nitrogen, sulfur, phosphorus, and potassium) and two micronutrients (zinc and copper) suggest that these might be the nutrients directing preferential feeding of A. auroguttatus adults on the foliage of Q. kelloggii. Leaf toughness might also play an important role in feeding preference. Female A. auroguttatus did not show an ovipositional preference among the four oak species.  相似文献   

15.
Goldspotted oak borer, Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), is a new invasive species in southern California, USA. The extent of the host range of this insect is not known, but this knowledge will have a major impact on assessment of the risks that this pest poses to oaks [Quercus spp. (Fagaceae)]. We conducted laboratory tests to determine the potential suitability of native and ornamental oak species for larvae and adults of A. auroguttatus. We infested 179 cut logs (from 163 different trees) with eggs or larvae, measured neonate survival and, after 5 months, counted feeding galleries, and noted the proportion of galleries with late instars. Initial larval survival was generally high when larvae penetrated the phloem (range: 62–98% among oak species), and low by the time larvae began to feed at the phloem/xylem interface (range: 0–25% among oak species). The majority of larvae that established a visible feeding gallery survived to the fourth instar (total of 73% for all oak species). Larval galleries were established with greater frequency in red oaks (Section Lobatae) compared with other oaks (19 vs. 7 or 4%). All red oaks tested (Q. agrifolia Née, Q. kelloggii Newberry, and Q. wislizeni A. DC.) were likely suitable hosts for larvae. Larvae were apparently able to feed on some of the other oaks (Q. chrysolepis Leibmann, Q. suber L., Q. lobata Née, and Q. douglasii Hook & Arn), although it remains unclear whether these species would be preferred hosts under natural conditions. Adult longevity and fecundity varied little by species of oak foliage fed to adults. The host range of A. auroguttatus is likely limited by suitability of oak species for the larval rather than the adult life stage. Results support published field observations that red oaks are more suitable hosts than white oaks.  相似文献   

16.
Freshwater mollusk shell morphology exhibits clinal variation along a stream continuum that has been termed the Law of Stream Distribution. We analyzed phylogenetic relationships and morphological similarity of two freshwater mussels (Bivalvia: Unionidae), Obovaria jacksoniana and Villosa arkansasensis, throughout their ranges. The objectives were to investigate phylogenetic structure and evolutionary divergence of O. jacksoniana and V. arkansasensis and morphological similarity between the two species. Our analyses were the first explicit tests of phenotypic plasticity in shell morphologies using a combination of genetics and morphometrics. We conducted phylogenetic analyses of mitochondrial DNA (1416 bp; two genes) and morphometric analyses for 135 individuals of O. jacksoniana and V. arkansasensis from 12 streams. We examined correlations among genetic, morphological, and spatial distances using Mantel tests. Molecular phylogenetic analyses revealed a monophyletic relationship between O. jacksoniana and V. arkansasensis. Within this O. jacksoniana/V. arkansasensis complex, five distinct clades corresponding to drainage patterns showed high genetic divergence. Morphometric analysis revealed relative differences in shell morphologies between the two currently recognized species. We conclude that morphological differences between the two species are caused by ecophenotypic plasticity. A series of Mantel tests showed regional and local genetic isolation by distance. We observed clear positive correlations between morphological and geographic distances within a single drainage. We did not observe correlations between genetic and morphological distances. Phylogenetic analyses suggest O. jacksoniana and V. arkansasensis are synonomous and most closely related to a clade composed of Oretusa, Osubrotunda, and Ounicolor. Therefore, the synonomous O. jacksoniana and V. arkansasensis should be recognized as Obovaria arkansasensis (Lea 1862) n. comb. Phylogenetic analyses also showed relative genetic isolation among drainages, suggesting no current gene flow. Further investigation of in‐progress speciation and/or cryptic species within O. arkansasensis is warranted followed by appropriate revision of conservation management designations.  相似文献   

17.
Tree leaves are important food sources for arboreal herbivores, such as primates, rodents, and marsupials. These animals do not eat leaves randomly in habitats with many tree species but rather choose based on the chemical components of leaves, such as sugars, fibers, proteins, and toxins. However, the effects of the microscale distribution of these chemicals within each leaf have not been examined for these animals. The giant flying squirrels Petaurista leucogenys are entirely arboreal, nocturnal herbivores, usually feeding on leaves and dropping leaf debris on the ground after partially consuming them. Therefore, we could easily assess which species of trees and which parts of the individual leaves they preferred to eat. We also examined microscale distributions of phenolics, sugar, and water within individual leaves. Of the two dominant food tree species, the deciduous Quercus acutissima was preferred over the evergreen Q. sessilifolia. The latter tree is only used during winter to early spring when the former had no leaves. Our chemical analyses revealed that Q. acutissima contained much more glucose than Q. sessilifolia in all seasons. Three types of leaf debris, eaten apically, basally, or centrally with a hole, were found. In Q. sessilifolia, which had low phenolic concentrations, apical eating was most common, whereas central eating was rare. In Q. acutissima, which had high phenolics, basal or central eating was common. Central feeding may be caused by avoiding the periphery because of a higher phenolic concentration in the leaf margin. Thus, microscale distributions of phenolics within individual leaves affect which parts P. leucogenys eats, whereas leaf sugar concentration is an important factor affecting which species of leaves they eat.  相似文献   

18.
19.
Climate change is predicted to increase the aridity in the Mediterranean Basin and severely affect forest productivity and composition. The responses of forests to different timescales of drought, however, are still poorly understood because extreme and persistent moderate droughts can produce nonlinear responses in plants. We conducted a rainfall‐manipulation experiment in a Mediterranean forest dominated by Quercus ilex, Phillyrea latifolia, and Arbutus unedo in the Prades Mountains in southern Catalonia from 1999 to 2014. The experimental drought significantly decreased forest aboveground‐biomass increment (ABI), tended to increase the litterfall, and decreased aboveground net primary production throughout the 15 years of the study. The responses to the experimental drought were highly species‐specific. A. unedo suffered a significant reduction in ABI, Q. ilex experienced a decrease during the early experiment (1999–2003) and in the extreme droughts of 2005–2006 and 2011–2012, and P. latifolia was unaffected by the treatment. The drought treatment significantly increased branch litterfall, especially in the extremely dry year of 2011, and also increased overall leaf litterfall. The drought treatment reduced the fruit production of Q. ilex, which affected seedling recruitment. The ABIs of all species were highly correlated with SPEI in early spring, whereas the branch litterfalls were better correlated with summer SPEIs and the leaf and fruit litterfalls were better correlated with autumn SPEIs. These species‐specific responses indicated that the dominant species (Q. ilex) could be partially replaced by the drought‐resistant species (P. latifolia). However, the results of this long‐term study also suggest that the effect of drought treatment has been dampened over time, probably due to a combination of demographic compensation, morphological and physiological acclimation, and epigenetic changes. However, the structure of community (e.g., species composition, dominance, and stand density) may be reordered when a certain drought threshold is reached.  相似文献   

20.
Resolving complexes of closely related and cryptic insect species can be challenging, especially when dealing with rare and protected taxa that are difficult to collect for genetic and morphological analyses. Until recently, populations of the genus Osmoderma (Scarabaeidae), widespread in Europe, were treated as a single species O. eremita (Scopoli, 1763) in spite of observed geographic variation in morphology. A previous survey using sequence data from the mtDNA cytochrome C oxidase I gene (COI) revealed the occurrence of at least two distinct lineages within this species complex: O. eremita in the west and O. barnabita Motschulsky, 1845, in the east. Interestingly, beetles confined to Sicily have been described as a distinct species, O. cristinae Sparacio, 1994, based on morphological traits. Only few Sicilian specimens were included in the former genetic analysis, and the results led to a still questionable taxonomic rank for these populations. To explore the robustness of the previous taxonomic arrangement for O. cristinae, a combination of genetic, morphological and pheromonal analyses was used. A 617‐bp fragment of the COI gene, aligned with O. cristinae and O. eremita sequences already available in GenBank, showed a clear genetic divergence between the two species (interspecific mean distance = 6.6%). Moreover, results from AFLP markers sustained the distinction of the two species. In addition, geometric morphometric analyses of the shape of male genitalia revealed a clear differentiation between the two species. Via scent analysis and field trapping, we demonstrated the production of the sex pheromone (R)‐(+)‐γ‐decalactone by males of O. cristinae, the attraction by conspecific individuals (mostly females) to this compound, and a lack of antagonistic effect of (S)‐(–)‐γ‐decalactone. The fact that O. eremita and O. eremita use the same compound for mate finding suggests that this sex pheromone has not undergone a differentiation and probably the allopatry of these two species compensates for the absence of a mechanism to avoid cross‐attraction. Our genetic and morphological data support the divergence of the two species and confirm the species status for O. cristinae, while sex pheromones are confirmed to be invariant among different species of the genus Osmoderma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号