首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polycomb-group gene Ezh2 is required for early mouse development   总被引:12,自引:0,他引:12       下载免费PDF全文
Polycomb-group (Pc-G) genes are required for the stable repression of the homeotic selector genes and other developmentally regulated genes, presumably through the modulation of chromatin domains. Among the Drosophila Pc-G genes, Enhancer of zeste [E(z)] merits special consideration since it represents one of the Pc-G genes most conserved through evolution. In addition, the E(Z) protein family contains the SET domain, which has recently been linked with histone methyltransferase (HMTase) activity. Although E(Z)-related proteins have not (yet) been directly associated with HMTase activity, mammalian Ezh2 is a member of a histone deacetylase complex. To investigate its in vivo function, we generated mice deficient for Ezh2. The Ezh2 null mutation results in lethality at early stages of mouse development. Ezh2 mutant mice either cease developing after implantation or initiate but fail to complete gastrulation. Moreover, Ezh2-deficient blastocysts display an impaired potential for outgrowth, preventing the establishment of Ezh2-null embryonic stem cells. Interestingly, Ezh2 is up-regulated upon fertilization and remains highly expressed at the preimplantation stages of mouse development. Together, these data suggest an essential role for Ezh2 during early mouse development and genetically link Ezh2 with eed and YY1, the only other early-acting Pc-G genes.  相似文献   

2.
3.
In this report we present the analysis of two overlapping mouse cosmid clones that contain the entire Kcnk6, Map3k11 and Pcnxl3 genes, as well as part of the Sipa1 gene. The sequence and genomic organisation of the Kcnk6 and Map3k11 genes are described in detail. Sipa1 and Map3k11, which have independently been mapped with low resolution to the centromeric region of mouse chromosome 19, are shown here to lie close to each other and to the Kcnk6 gene, which has not previously been mapped. This gene cluster maps to the vicinity of the Dancer (Dc) mutation, which involves inner ear abnormalities and circling phenotypes. Since potassium channels have been implicated in deafness disorders, we have analysed the Kcnk6 gene, which encodes a two-P domain potassium channel, in the Dc mutant. No Dc-causing mutation in the Kcnk6 coding region could be identified. However, we detected a polymorphism in the Kcnk6 gene that leads to a C-terminal extension of the encoded protein by eight amino acids.  相似文献   

4.
5.
6.
The gene locus for the alpha 2 chain of type 1 collagen (Cola-2) was previously assigned to chromosome 16. Here we demonstrate, utilising both somatic cell hybrid analysis and genetic linkage analysis, in an interspecific Mus domesticus x Mus spretus cross that Cola-2 fails to cosegregate with mouse chromosome 16, but is linked to the Met proto-oncogene on chromosome 6.  相似文献   

7.
8.
9.
B S Allen  J L Stein  G S Stein  H Ostrer 《Genomics》1991,10(2):486-488
Two single-copy sequences flanking two different human histone gene clusters were used as probes to map these clusters by in situ hybridization. pFF435B, a unique sequence subclone derived from a lambda genomic clone (lambda HHG55) containing H2A, H2B, H3, and H4 genes, mapped to chromosome 1q21 (chi 2 = 120.99, P less than 0.001). pST519E, a single-copy sequence derived from a lambda genomic clone (lambda HHG17) containing only H3 and H4 genes, mapped to chromosome 6p21 (chi 2 = 112.62, P less than 0.001). These findings agree with previous assignments of human histone genes to chromosomes 1 and 6 and demonstrate that the single-copy flanking sequences in different human histone gene clusters are unique for different chromosomes.  相似文献   

10.
The rise and fall of Hox gene clusters   总被引:9,自引:0,他引:9  
Although all bilaterian animals have a related set of Hox genes, the genomic organization of this gene complement comes in different flavors. In some unrelated species, Hox genes are clustered; in others, they are not. This indicates that the bilaterian ancestor had a clustered Hox gene family and that, subsequently, this genomic organization was either maintained or lost. Remarkably, the tightest organization is found in vertebrates, raising the embarrassingly finalistic possibility that vertebrates have maintained best this ancestral configuration. Alternatively, could they have co-evolved with an increased ;organization' of the Hox clusters, possibly linked to their genomic amplification, which would be at odds with our current perception of evolutionary mechanisms? When discussing the why's and how's of Hox gene clustering, we need to account for three points: the mechanisms of cluster evolution; the underlying biological constraints; and the developmental modes of the animals under consideration. By integrating these parameters, general conclusions emerge that can help solve the aforementioned dilemma.  相似文献   

11.
12.
To enhance the comparative map for human Chromosome (Chr) 13, we identified clones for human genes and anonymous loci that cross-hybridized with their mouse homologs and then used linkage crosses for mapping. Of the clones for four genes and twelve anonymous loci tested, cross-hybridization was found for six, COL4A1, COL4A2, D13S26, D13S35, F10, and PCCA. Strong evidence for homology was found for COL4A1, COL4A2, D13S26, D13S35, and F10, but only circumstantial homology evidence was obtained for PCCA. To genetically map these mouse homologs (Cf10, Col4a1, Col4a2, D14H13S26, D8H13S35, and Pcca-rs), we used interspecific and intersubspecific mapping panels. D14H13S26 and Pcca-rs were located on the distal portion of mouse Chr 14 extending by 30 cM the conserved linkage between human Chr 13 and mouse Chr 14, assuming that Pcca-rs is the mouse homolog of PCCA. By contrast, Cf10, Col4a1, Col4a2, and D8H13S35 mapped near the centromere of mouse Chr 8, defining a new conserved linkage. Finally, we identified either a closely linked sequence related to Col4a2, or a recombination hot-spot between Col4a1 and Col4a2 that has been conserved in humans and mice.  相似文献   

13.
The cytokines, IL-3, IL-4, IL-5, and GM-CSF (encoded by murine genes Il-3, Il-4, Il-5, and Csfgm) belong to a family of secreted glycoprotein hormones that regulate the haemopoietic and immune systems. We demonstrate here using in situ hybridization that Il-3 and Il-5 are both probably located in the segment comprising band A5 and the proximal half of band B1 on mouse chromosome 11 with a possible location point in band B1 near its proximal interface with band A5. In studies reported elsewhere we have shown close physical linkage between Il-3 and Csfgm and also between Il-4 and Il-5. The in situ hybridization results therefore indicate that all four cytokine genes are clustered on chromosome 11 raising the possibility that they arose by ancient gene duplication.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Barbiturate dependence is associated with the development of physiological dependence (withdrawal), tolerance, or a maladaptive pattern of drug use. Analysis of strain and individual differences with animal models for physiological dependence liability are useful means to identify potential genetic determinants of liability in humans. Behavioral and quantitative trait locus (QTL) mapping analyses were conducted with mice that are resistant versus sensitive to pentobarbital withdrawal. With a multi-stage genetic mapping strategy, a pentobarbital withdrawal QTL (Pbw1) was mapped to the distal region of mouse Chromosome (Chr) 1 and may be identical to an alcohol withdrawal QTL mapped to this chromosomal region. Two suggestive QTLs for pentobarbital withdrawal, both in proximity to QTLs definitely mapped for alcohol withdrawal, were also tentatively identified. These were on Chr 11 in proximity to a gene cluster including several members of the GABAA receptor gene family, and on Chr 4 near a locus associated with β-carboline-induced seizure severity. These data represent the first detection and mapping of loci influencing risk for physiological dependence on barbiturates, and suggest the involvement of common genes in physiological dependence on pentobarbital and alcohol. Received: 14 October 1998 / Accepted: 19 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号