首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have raised a rabbit antiserum against a synthetic peptide corresponding to the cleavage site between beta-lipotropic hormone and the ACTH moieties of murine pro-opiomelanocortin (POMC). After affinity purification, the anti-cleavage site antibody immunoprecipitates POMC from extracts of AtT20 cells but it does not immunoprecipitate the ACTH in such extracts or any of the other products of cleavage of POMC. By contrast, an antiserum raised against pure swine ACTH immunoprecipitates both POMC and ACTH from AtT20 cell extracts. Using the anti-cleavage site antibody we have shown that all the POMC synthesized during a 15-min pulse-labeling with [35S]methionine is cleaved at this site within 1 h. By immunoelectron microscopy we show that approximately 25-30% of peripheral secretory granules in AtT20 cells can be labeled with the anti-cleavage site antibody while anti-ACTH antiserum labels all these granules. This establishes that at least some POMC is packaged into secretory granules before its proteolytic cleavage.  相似文献   

2.
3.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

4.
The complexity of corticotropic cell regulation by multiple central and peripheral factors is well recognized. The present study provides evidence for the participation of an additional factor in the regulation of this cell type of the anterior pituitary. Using the clonal AtT20 cell line as a model for corticotropes, homodimeric activin-A was observed to suppress basal ACTH secretion and POMC mRNA accumulation by approximately 50%. These effects required prolonged treatment with activin-A and were concentration dependent; the half-maximum concentration was in the range of 30-50 pM. Consistently, AtT20 cells were found to express specific high affinity binding sites for [125I]activin-A. The simultaneous addition of inhibin-A along with increasing concentrations of activin-A did not alter the characteristics of the inhibition of ACTH secretion by activin-A alone. This is in contrast to observations with gonadotropes of the anterior pituitary as well as a number of other cell types in which inhibin-A can partially antagonize the biological actions of activin-A. The results may suggest the participation of a subclass of activin receptors that mediate effects on ACTH secretion and POMC mRNA accumulation. As previously shown, the incubation of AtT20 cells with a synthetic glucocorticoid, dexamethasone, attenuated basal ACTH secretion and POMC expression in a concentration-dependent manner. The inhibition of both of these parameters by activin-A, however, was independent of glucocorticoids, because the two agents were additive in their actions. In addition to effects on secretion and mRNA levels, treatment with activin-A also inhibited the rate of proliferation of AtT20 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Vesicular transport of peptide hormones from the cell body to the plasma membrane for activity-dependent secretion is important for endocrine function, but how it is achieved is unclear. Here we uncover a mechanism in which the cytoplasmic tail of transmembrane carboxypeptidase E (CPE) found in proopiomelanocotin (POMC)/ACTH vesicles interacts with microtubule-based motors to control transport of these vesicles to the release site in pituitary cells. Overexpression of the CPE tail in live cells significantly reduced the velocity and distance of POMC/ACTH- and CPE-containing vesicle movement into the cell processes. Biochemical studies showed that the CPE tail interacted with dynactin, which, in turn, recruited microtubule plus-end motors kinesin 2 and kinesin 3. Overexpression of the CPE tail inhibited the stimulated secretion of ACTH from AtT20 cells. Thus, the CPE cytoplasmic tail interaction with dynactin-kinesin 2/kinesin 3 plays an important role in the transport of POMC vesicles for activity-dependent secretion.  相似文献   

7.
Prior to secretion, regulated peptide hormones are selectively sorted to secretory granules (SGs) at the trans‐Golgi network (TGN) in endocrine cells. Secretogranin III (SgIII) appears to facilitate SG sorting process by tethering of protein aggregates containing chromogranin A (CgA) and peptide hormones to the cholesterol‐rich SG membrane (SGM). Here, we evaluated the role of SgIII in SG sorting in AtT‐20 cells transfected with small interfering RNA targeting SgIII. In the SgIII‐knockdown cells, the intracellular retention of CgA was greatly impaired, and only a trace amount of CgA was localized within the vacuoles formed in the TGN, confirming the significance of SgIII in both the tethering of CgA‐containing aggregates and the establishment of the proper SG morphology. Although the intracellular retention of proopiomelanocortin (POMC) was considerably impaired in SgIII‐knockdown cells, residual adrenocorticotropic hormone (ACTH)/POMC was still localized to some few remaining SGs together with another granin protein, secretogranin II (SgII), and was secreted in a regulated manner. Biochemical analyses indicated that SgII bound directly to the SGM in a cholesterol‐dependent manner and was able to retain the aggregated form of POMC, revealing a latent redundancy in the SG sorting and retention mechanisms, that ensures the regulated secretion of bioactive peptides.  相似文献   

8.
The AtT20 pituitary cell is the one that was originally used to define the pathways taken by secretory proteins in mammalian cells. It possesses two secretory pathways, the constitutive for immediate secretion and the regulated for accumulation and release under hormonal stimulation. It is in the regulated pathway, most precisely in the immature granule of the regulated pathway, that proteolytic maturation takes place. A pathway that stems from the regulated one, namely the constitutive-like pathway releases proteins present in immature granules that are not destined for accumulation in mature granules. In AtT20 cells proopiomelanocortin the endogenous precursor of the accumulated adrenocorticotropic hormone, is predominantly secreted in a constitutive manner without proteolytic maturation. In order to better understand by which secretory pathway intact proopiomelanocortin is secreted by a cell line possessing a regulated secretory pathway, it was transfected with rat serum albumin (a marker of constitutive secretory proteins), and pancreatic amylase (a marker of regulated proteins). COS cells were also transfected in order to serve as control of release by the constitutive pathway. It was observed that both the basal and stimulated secretions of albumin and proopiomelanocortin from AtT20 cells are identical. In addition, secretagogue stimulation when POMC is in transit in the trans-Golgi network decreases its constitutive secretion by 50%. It was also observed using cell fractionation and 20 degrees C secretion blocks that albumin and proopiomelanocortin are present in the regulated pathway, presumably in the immature granules, and are secreted by the constitutive-like secretory pathway. These observations show that stimulation can increase sorting into the regulated pathway, and confirm the importance of the constitutive-like secretory pathway in the model AtT20 cell line.  相似文献   

9.
In order to elucidate the relationship between secretory pathway and processing for precursor molecule of peptide hormones, we performed immunoelectron microscopic studies to localize POMC-derived peptides in mouse cultured L cells (fibroblasts without secretory granules) and in mouse AtT20 cells (ACTH secreting pituitary tumor cells with secretory granules) which had been transformed with human POMC gene. From the electron microscopic localization patterns, L42 cells were considered to serve as a model of constitutive pathway without processing of POMC, and A53 cells were considered to serve as a model of transgranular (regulated) pathway with processing of POMC. Immunoblotting supported these interpretations.  相似文献   

10.
11.
P-selectin (CD62), formerly called GMP-140 or PADGEM, is a membrane protein located in secretory storage granules of platelets and endothelial cells. To study the mechanisms responsible for the targeting of P-selectin to storage granules, we transfected its cDNA into COS-7 and CHO-K1 cells, which lack a regulated exocytic pathway, or into AtT20 cells, which are capable of regulated secretion. P-selectin was expressed on the plasma membrane of COS-7 and CHO-K1 cells but was concentrated in storage granules of AtT20 cells. Immunogold electron microscopy indicated that the electron-dense granules containing P-selectin in AtT20 cells also stored the endogenous soluble hormone ACTH. Activation of AtT20 cells with 8-Br-cAMP increased the surface expression of P-selectin, consistent with agonist-induced fusion of granule membranes with the plasma membrane. Deletion of the last 23 amino acids of the 35-residue cytoplasmic domain resulted in delivery of P-selectin to the plasma membrane of AtT20 cells. Replacement of the cytoplasmic tail of tissue factor, a plasma membrane protein, with the cytoplasmic domain of P-selectin redirected the chimeric molecule to granules. We conclude that the cytoplasmic domain of P-selectin is both necessary and sufficient for sorting of membrane proteins into the regulated pathway of secretion.  相似文献   

12.
Carboxypeptidase H is a putative post-translational processing enzyme which removes basic amino acid residues from intermediates during protein hormone biosynthesis. A 2.2-kilobase pair cDNA was shown to contain the complete amino acid sequence of rat carboxypeptidase H. The deduced amino acid sequence revealed that the enzyme was synthesized as preprocarboxypeptidase H, a precursor form of 476 amino acid residues. Preprocarboxypeptidase H contained a putative hydrophobic signal peptide and a short propeptide which contained 5 adjacent Arg residues at its C terminus. Northern blot analysis identified a single carboxypeptidase H mRNA of approximately 2.3 kilobases in brain, pituitary, and heart, as well as in mouse AtT20 cells. No carboxypeptidase H mRNA was detected in rat liver, spleen, kidney, lung, and mammary gland. Sequence analysis of cDNAs obtained from different rat tissues suggested that a single mRNA encodes an identical carboxypeptidase in several tissues. Treatment of AtT20 cells with dexamethasone decreased the levels of both carboxypeptidase H and preproopiomelanocortin (POMC) mRNAs by approximately 30%. Exposure of the dexamethasone-treated cells to corticotropin-releasing factor effected a 2- to 3-fold increase in the carboxypeptidase H and POMC mRNA levels relative to those of dexamethasone-treated cells exposed to control medium. This suggests that the mRNA levels of POMC and one of its putative post-translational processing enzymes, carboxypeptidase H, are co-regulated by corticotropin-releasing factor and steroid hormones.  相似文献   

13.
14.
Bergeron F  Sirois F  Mbikay M 《FEBS letters》2002,512(1-3):259-262
7B2 is a pan-neuroendocrine protein known to facilitate the trafficking and activation of the prohormone proprotein convertase-2 (PC2). 7B2-null mice not only lack PC2 activity, but they also develop an adrenocorticotropic hormone (ACTH) hypersecretion syndrome, suggesting that 7B2 may regulate hormone secretion. To verify this possibility, we introduced into mouse corticotroph AtT20 cells a retroviral vector carrying either a sense or an antisense 7B2 transgene to induce higher and lower 7B2 expression, respectively. Relative to control AtT20 cells, 7B2-overexpressing cells released less ACTH following KCl-induced membrane depolarization, whereas cells expressing lower levels of 7B2 released relatively more, suggesting that 7B2-related peptides modulate regulated secretion in neuroendocrine cells.  相似文献   

15.
The ectopic expression of the glucose-dependent insulinotropic polypeptide receptor (GIPR) in the human adrenal gland causes significant hypercortisolemia after ingestion of each meal and leads to Cushing’s syndrome, implying that human GIPR activation is capable of robustly activating adrenal glucocorticoid secretion. In this study, we transiently transfected the human GIPR expression vector into cultured human adrenocortical carcinoma cells (H295R) and treated them with GIP to examine the direct link between GIPR activation and steroidogenesis. Using quantitative RT-PCR assay, we examined gene expression of steroidogenic related proteins, and carried out immunofluorescence analysis to prove that forced GIPR overexpression directly promotes production of steroidogenic enzymes CYP17A1 and CYP21A2 at the single cell level. Immunofluorescence showed that the transfection efficiency of the GIPR gene in H295R cells was approximately 5%, and GIP stimulation enhanced CYP21A2 and CYP17A1 expression in GIPR-introduced H295R cells (H295R-GIPR). Interestingly, these steroidogenic enzymes were also expressed in the GIPR (–) cells adjacent to the GIPR (+) cells. The mRNA levels of a cholesterol transport protein required for all steroidogenesis, StAR, and steroidogenic enzymes, HSD3β2, CYP11A1, CYP21A2, and CYP17A1 increased 1.2-2.1-fold in GIP-stimulated H295R-GIPR cells. These changes were reflected in the culture medium in which 1.5-fold increase in the cortisol concentration was confirmed. Furthermore, the levels of adenocorticotropic hormone (ACTH) receptor and ACTH precursor proopiomelanocortin (POMC) mRNA were upregulated 2- and 1.5-fold, respectively. Immunofluorescence showed that ACTH expression was detected in GIP-stimulated H295R-GIPR cells. An ACTH-receptor antagonist significantly inhibited steroidogenic gene expression and cortisol production. Immunostaining for both CYP17A1 and CYP21A2 was attenuated in cells treated with ACTH receptor antagonists as well as with POMC siRNA. These results demonstrated that GIPR activation promoted production and release of ACTH, and that steroidogenesis is activated by endogenously secreted ACTH following GIP administration, at least in part, in H295R cells.  相似文献   

16.
Aquaporins (AQPs), a family of water channels expressed in epithelial cells, function to transport water in a bidirectional manner to facilitate transepithelial fluid absorption and secretion. Additionally, AQP1 and AQP5 are found in pancreatic zymogen granules and synaptic vesicles and are involved in vesicle swelling and exocytosis in exocrine cells and neurons. Here, we show AQP1 is in dense-core secretory granule (DCSG) membranes of endocrine tissue: pituitary and adrenal medulla. The need for AQP1 in endocrine cell function was examined by stable transfection of AQP1 antisense RNA into AtT20 cells, a pituitary cell line, to down-regulate AQP1 expression. These AQP1-deficient cells showed more than 60% depletion of DCSGs and significantly decreased DCSG protein levels, including proopiomelanocotin/pro-ATCH and prohormone convertase 1/3, but not non-DCSG proteins. Pulse-chase studies revealed that whereas DCSG protein synthesis was unaffected, approximately 50% of the newly synthesized proopiomelanocortin was degraded within 1 h. Low levels of ACTH were released upon stimulation, indicating that the small number of DCSGs that were made in the presence of the residual AQP1 were functionally competent for exocytosis. Analysis of anterior pituitaries from AQP1 knockout mice showed reduced prohormone convertase 1/3, carboxypeptidase E, and ACTH levels compared to wild-type mice demonstrating that our results observed in AtT20 cells can be extended to the animal model. Thus, AQP1 is important for maintaining DCSG biogenesis and normal levels of hormone secretion in pituitary endocrine cells.  相似文献   

17.
18.
Pro-opiomelanocortin (POMC) was expressed in CV-1 (green monkey kidney) cells using a vaccinia virus transient expression system [(1986) Proc. Natl. Acad. Sci. USA 83, 8122]. The system involved infection of cells with a recombinant vaccinia virus carrying the T7 RNA polymerase gene and transfection with a plasmid containing the mouse POMC sequence flanked by the T7 RNA polymerase promoter at its 5'-end and the T7 RNA polymerase terminator at its 3'-end. Assay of the medium from transfected cells showed that 1-2 micrograms of immunoreactive ACTH was produced/10(6) cells. Analysis of the same medium by SDS-PAGE/Western blots revealed a band of 30-36 kDa, which was immunostained with both ACTH and beta-endorphin antisera. Labeling the transfected cells with [3H]Arg, followed by immunoprecipitation and SDS-PAGE showed the synthesis of a major peak of POMC, 33 kDa. Purified [3H]POMC expressed by CV-1 cells was cleaved in vitro by bovine intermediate lobe secretory vesicle pro-opiomelanocortin-converting enzyme to ACTH intermediates (19-25 kDa), beta-lipotropin and beta-endorphin. Thus, this work has demonstrated a technique for expressing microgram quantities of prohormones in mammalian cells, suitable for use as substrates for prohormone-converting enzymes in vitro.  相似文献   

19.
Secondary stressors in long-term hypoxic (LTH) fetal sheep lead to altered function of the hypothalamic-pituitary-adrenal axis. Although ACTH is considered the primary mediator of glucocorticoid production in fetal sheep, proopiomelanocortin (POMC) and 22-kDa pro-ACTH (22-kDa ACTH) have been implicated in the regulation of cortisol production in the ovine fetus. This study was designed to determine whether POMC expression and processing are altered after LTH. Pregnant ewes were maintained at high altitude (3,820 m) from day 30 of gestation to near term, when the animals were transported to the laboratory. Reduced Po2 was maintained by nitrogen infusion through a maternal tracheal catheter. On days 139-141, fetal anterior pituitaries were collected from normoxic control and LTH fetuses. We measured POMC and corticotrophin-releasing factor type 1 receptor (CRF1-R) mRNA using quantitative real-time PCR, and we used Western blot analysis for quantitation of ACTH, ACTH precursor, and CRF1-R proteins. We measured plasma ACTH1-39 using a two-site immunoradiometric assay specific for ACTH1-39. Plasma ACTH precursors were measured by ELISA. Anterior pituitary POMC mRNA levels were not different between groups, whereas CRF1-R levels were significantly higher in the LTH anterior pituitaries compared with control (P<0.05). In contrast, protein levels of POMC, CRF1-R, 22-kDa ACTH, and ACTH1-39 were significantly lower in the LTH group. Plasma concentrations of both ACTH precursors and ACTH1-39 were significantly elevated in LTH fetuses, whereas the ratio of plasma precursors to ACTH was significantly lower. We conclude that LTH results in enhanced POMC processing and/or release to ACTH and increased hypothalamic drive.  相似文献   

20.
Translocation of Protein Kinase C in Anterior Pituitary Tumor Cells   总被引:5,自引:5,他引:0  
Previous studies have shown that phorbol esters and lithium each stimulate the secretion of adrenocorticotropic hormone (ACTH) by the anterior pituitary tumor cell line AtT20/D16-16. Pretreatment with either lithium or phorbol ester desensitizes the cells to subsequent stimulation by phorbol ester. An early consequence of phorbol ester action in other systems is the translocation of protein kinase C from cytosol to membranes. We have assayed protein kinase C activity in cytosol and membranes of AtT20 cells after treatment with phorbol dibutyrate, lithium, or other agents that stimulate secretion of ACTH in these cells. Phorbol dibutyrate clearly induced translocation of protein kinase C, but lithium treatment did not cause translocation itself, nor did pretreatment with lithium affect the translocation induced by phorbol dibutyrate. These results are consistent with a role for translocation of protein kinase C in the stimulatory and desensitizing effects of phorbol esters but fail to implicate translocation in the actions of lithium on AtT20 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号