首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative stress is known to be involved in growth control of vascular smooth muscle cells (VSMCs). We and others have demonstrated that angiotensin II (Ang II) has an important role in vascular remodeling. Several reports suggested that VSMC growth induced by Ang II was elicited by oxidative stress. Gax, growth arrest-specific homeobox is a homeobox gene expressed in the cardiovascular system. Over expression of Gax is demonstrated to inhibit VSMC growth. We previously reported that Ang II down-regulated Gax expression. To address the regulatory mechanism of Gax, we investigated the significance of oxidative stress in Ang II-induced suppression of Gax expression. We further examined the involvement of mitogen-activated protein kinases (MAPKs), which is crucial for cell growth and has shown to be activated by oxidative stress, on the regulation of Gax expression by Ang II. Ang II markedly augmented intracellular H2O2 production which was decreased by pretreatment with N-acetylcystein (NAC), an anti-oxidant. Ang II and H2O2 decreased Gax expression dose-dependently and these effects were blocked by administration of both NAC and pyrrolidine dithiocarbamate (PDTC), another anti-oxidant. Ang II and H2O2 induced marked activation of extracellular signal-responsive kinase1/2 (ERK1/2), which was blocked by NAC. Ang II and H2O2 also activated p38MAPK, and they were blocked by pre-treatment with NAC. However, the level of activated p38MAPK was quite low in comparison with ERK1/2. Ang II- or H2O2 -induced Gax down-regulation was significantly inhibited by PD98059, an ERK1/2 inhibitor but not SB203580, a p38MAPK inhibitor. The present results demonstrated the significance of regulation of Gax expression by redox-sensitive ERK1/2 activation.  相似文献   

2.
3.
4.
5.
6.
The jeju, Hoplerythrinus unitaeniatus, is equipped with a modified part of the swim bladder that allows aerial respiration. On this background, we have evaluated its respiratory and cardiovascular responses to aquatic hypoxia. Its aquatic O2 uptake (V(O2)) was maintained constant down to a critical P(O2) (P(cO2)) of 40 mm Hg, below which V(O2) declined linearly with further reductions of P(iO2). Just below P(cO2), the ventilatory tidal volume (V(T)) increased significantly along with gill ventilation (V(G)), while respiratory frequency changed little. Consequently, water convection requirement (V(G)/V(O2)) increased steeply. The same threshold applied to cardiovascular responses that included reflex bradycardia and elevated arterial blood pressure (P(a)). Aerial respiration was initiated at water P(O2) of 44 mm Hg and breathing episodes and time at the surface increased linearly with more severe hypoxia. At the lowest water P(O2) (20 mm Hg), the time spent at the surface accounted for 50% of total time. This response has a character of a temporary emergency behavior that may allow the animal to escape hypoxia.  相似文献   

7.
Signaling by phosphatidylinositol (PI) 3-kinases is mediated by 3-phosphoinositides, which bind to Pleckstrin homology (PH) domains that are present in a wide spectrum of proteins. PH domains can be classified into three groups based on their different lipid binding specificities. Distinct 3-phosphoinositides can accumulate upon PI 3-kinase activation in cells in response to different stimuli and mediate specific cellular responses. In Swiss 3T3 mouse fibroblasts, oxidative stress induced by 1 mM H(2)O(2) caused almost exclusive accumulation of phosphatidylinositol 3,4-bisphosphate (PtdIns(3, 4)P(2)), whereas osmotic stress increased both phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and PtdIns(3,4)P(2) levels. The increase in PtdIns(3,4)P(2) levels, caused by oxidative stress, correlated with the activation of protein kinase B, which has a promiscuous PH domain that binds both PtdIns(3,4,5)P(3) and PtdIns(3, 4)P(2). p70 S6 kinase, another signaling component downstream of PI 3-kinase, however, was not activated by this oxidative stress-induced increase in PtdIns(3,4)P(2) levels. Increased PtdIns(3,4,5)P(3) and PtdIns(3,4)P(2) levels in response to osmotic stress did not correlate with protein kinase B activation, because of concomitant activation of an inhibitory pathway, but p70 S6 kinase was activated by osmotic stress. These results demonstrate that PtdIns(3,4)P(2) can accumulate independently of PtdIns(3,4, 5)P(3) and exerts a pattern of cellular responses that is distinct from that induced by accumulation of PtdIns(3,4,5)P(3).  相似文献   

8.
Oxidative stress induces in endothelial cells a quick and transient coactivation of both stress-activated protein kinase-2/p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. We found that inhibiting the ERK pathway resulted, within 5 min of oxidative stress, in a misassembly of focal adhesions characterized by mislocalization of key proteins such as paxillin. The focal adhesion misassembly that followed ERK inhibition with the mitogen-activated protein kinase kinase (MEK) inhibitor PD098059 (2'-amino-3'-methoxyflavone) or with a kinase negative mutant of ERK in the presence of H(2)O(2) resulted in a quick and intense membrane blebbing that was associated with important damage to the endothelium. We isolated by two-dimensional gel electrophoresis a PD098059-sensitive phosphoprotein of 38 kDa that we identified, by mass spectrometry, as tropomyosin-1. In fact, H(2)O(2) induced a time-dependent phosphorylation of tropomyosin that was sensitive to inhibition by PD098059 and UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butanediane). Tropomyosin phosphorylation was also induced by expression of a constitutively activated form of MEK1 (MEK(CA)), which confirms that its phosphorylation resulted from the activation of ERK. In unstimulated cells, tropomyosin-1 was found diffuse in the cells, whereas it quickly colocalized with actin and stress fibers upon stimulation of ERK by H(2)O(2) or by expression of MEK(CA). We propose that phosphorylation of tropomyosin-1 downstream of ERK by contributing to formation of actin filaments increases cellular contractility and promotes the formation of focal adhesions. Incidentally, ML-7 (1-[5iodonaphthalene-1-sulfonyl]homopiperazine, HCl), an inhibitor of cell contractility, inhibited phosphorylation of tropomyosin and blocked the formation of stress fibers and focal adhesions, which also led to membrane blebbing in the presence of oxidative stress. Our finding that tropomyosin-1 is phosphorylated downstream of ERK, an event that modulates its interaction with actin, may lead to further understanding of the role of this protein in regulating cellular functions associated with cytoskeletal remodeling.  相似文献   

9.
Leptin, a liver profibrogenic cytokine, induces oxidative stress in hepatic stellate cells (HSCs), with increased formation of the oxidant H2O2, which signals through p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, stimulating tissue inhibitor of metalloproteinase-1 production. Since oxidative stress is a pathogenic mechanism of liver fibrosis and activation of collagen gene is a marker of fibrogenesis, we evaluated the effects of leptin on collagen I expression. We report here that, in LX-2 human HSCs, leptin enhances the levels of alpha1(I) collagen mRNA, promoter activity and protein. Janus kinase (JAK)1 and JAK2 were activated. H2O2 formation was increased; this was prevented by the JAK inhibitor AG490, suggesting a JAK-mediated process. ERK1/2 and p38 were activated, and the activation was blocked by catalase, consistent with an H2O2-dependent mechanism. AG490 and catalase also prevented leptin-stimulated alpha1(I) collagen mRNA expression. PD098059, an ERK1/2 inhibitor, abrogated ERK1/2 activation and suppressed alpha1(I) collagen promoter activity, resulting in mRNA down-regulation. The p38 inhibitor SB203580 and overexpression of dominant negative p38 mutants abrogated p38 activation and down-regulated the mRNA. While SB203580 had no effect on the promoter activity, it reduced the mRNA half-life from 24 to 4 h, contributing to the decreased mRNA level. We conclude that leptin stimulates collagen production through the H2O2-dependent and ERK1/2 and p38 pathways via activated JAK1 and JAK2. ERK1/2 stimulates alpha1(I) collagen promoter activity, whereas p38 stabilizes its mRNA. Accordingly, interference with leptin-induced oxidative stress by antioxidants provides an opportunity for the prevention of liver fibrosis.  相似文献   

10.
Although hypoxia tolerance in heterothermic mammals is well established, it is unclear whether the adaptive significance stems from hypoxia or other cellular challenge associated with euthermy, hibernation, or arousal. In the present study, blood gases, hemoglobin O2 saturation (S(O2), and indexes of cellular and physiological stress were measured during hibernation and euthermy and after arousal thermogenesis. Results show that arterial O2 tension (Pa(O2)) and S(O2) are severely diminished during arousal and that hypoxia-inducible factor (HIF)-1alpha accumulates in brain. Despite evidence of hypoxia, neither cellular nor oxidative stress, as indicated by inducible nitric oxide synthase (iNOS) levels and oxidative modification of biomolecules, was observed during late arousal from hibernation. Compared with rats, hibernating Arctic ground squirrels (Spermophilus parryii) are well oxygenated with no evidence of cellular stress, inflammatory response, neuronal pathology, or oxidative modification following the period of high metabolic demand necessary for arousal. In contrast, euthermic Arctic ground squirrels experience mild, chronic hypoxia with low S(O2) and accumulation of HIF-1alpha and iNOS and demonstrate the greatest degree of cellular stress in brain. These results suggest that Arctic ground squirrels experience and tolerate endogenous hypoxia during euthermy and arousal.  相似文献   

11.
The objective of this research was to identify the biochemical agents responsible for the oxidative degradation of lignin by the white-rot fungus Phanerochaete chrysosporium. We examined the hypothesis that activated oxygen species are involved, and we also sought the agent in ligninolytic cultures responsible for a specific oxidative degradative reaction in substructure model compounds. Results of studies of the production of activated oxygen species by cultures, of the effect of their removal on ligninolytic activity, and of their action on substructure model compounds support a role for hydrogen peroxide (H(2)O(2)) and possibly superoxide (O(2)(*)(-)) in lignin degradation. Involvement of hydroxyl radical (*OH) or singlet oxygen (1O(2)) is not supported by our data. The actual biochemical agent responsible for one important oxidative C-C bond cleavage reaction in non-phenolic lignin substructure model compounds, and in lignin itself, was found to be an enzyme. The enzyme is extracellular, has a molecular weight of 42,000 daltons, is azide-sensitive, and requires H(2)O(2) for activity.  相似文献   

12.
13.
The relationship between cerebral interstitial oxygen tension (Pt(O(2))) and cellular energetics was investigated in mechanically ventilated, anesthetized rats during progressive acute hypoxia to determine whether there is a "critical" brain Pt(O(2)) for maintaining steady-state aerobic metabolism. Cerebral Pt(O(2)), measured by electron paramagnetic resonance oximetry, decreased proportionately to inspired oxygen fraction. (31)P-nuclear magnetic resonance measurements revealed no changes in P(i), phosphocreatine (PCr)/P(i) ratio, or intracellular pH when arterial blood oxygen tension (Pa(O(2))) was reduced from 145.1 +/- 11.7 to 56.5 +/- 4.4 mmHg (means +/- SE). Intracellular acidosis, a sharp rise in P(i), and a decline in the PCr/P(i) ratio developed when Pa(O(2)) was reduced further to 40.7 +/- 2.3 mmHg. The corresponding Pt(O(2)) values were 15.1 +/- 1.8, 8.8 +/- 0.4, and 6.8 +/- 0.3 mmHg. We conclude that over a range of decreasing oxygen tensions, cerebral oxidative metabolism is not sensitive to oxygen concentration. Oxygen becomes a regulatory substrate, however, when Pt(O(2)) is decreased to a critical level.  相似文献   

14.
Experiments were performed to assess the afferent and efferent limbs of the hypoxia-mediated humoral adrenergic stress response in selected hypoxia-tolerant tropical fishes that routinely experience environmental O(2) depletion. Plasma catecholamine (Cat) levels and blood respiratory status were measured during acute aquatic hypoxia [water Po(2) (Pw(O(2))) = 10-60 mmHg] in three teleost species, the obligate water breathers Hoplias malabaricus (traira) and Piaractus mesopotamicus (pacu) and the facultative air breather Hoplerythrinus unitaeniatus (jeju). Traira displayed a significant increase in plasma Cat levels (from 1.3 +/- 0.4 to 23.3 +/- 15.1 nmol/l) at Pw(O(2)) levels below 20 mmHg, whereas circulating Cat levels were unaltered in pacu at all levels of hypoxia. In jeju denied access to air, plasma Cat levels were increased markedly to a maximum mean value of 53.6 +/- 19.1 nmol/l as Pw(O(2)) was lowered below 40 mmHg. In traira and jeju, Cat release into the circulation occurred at abrupt thresholds corresponding to arterial Po(2) (Pa(O(2))) values of approximately 8.5-12.5 mmHg. A comparison of in vivo blood O(2) equilibration curves revealed low and similar P(50) values (i.e., Pa(O(2)) at 50% Hb-O(2) saturation) among the three species (7.7-11.3 mmHg). Thus Cat release in traira and jeju occurred as blood O(2) concentration was reduced to approximately 50-60% of the normoxic value. Intravascular injections of nicotine (600 nmol/kg) elicited pronounced increases in plasma Cat levels in traira and jeju but not in pacu. Thus the lack of Cat release during hypoxia in pacu may reflect an inoperative or absent humoral adrenergic stress response in this species. When allowed access to air, jeju did not release Cats into the circulation at any level of aquatic hypoxia. The likeliest explanation for the absence of Cat release in these fish was that air breathing, initiated by aquatic hypoxia, prevented Pa(O(2)) values from falling to the critical threshold required for Cat secretion. The ventilatory responses to hypoxia in each species were similar, consisting generally of increases in both frequency and amplitude. These responses were not synchronized with or influenced by plasma Cat levels. Thus the acute humoral adrenergic stress response does not appear to stimulate ventilation during acute hypoxia in these tropical species.  相似文献   

15.
Primary cortical neurones exposed to an oxidative insult in the form of hydrogen peroxide (H(2)O(2)) for 30 min showed a concentration-dependent increase in oxidative stress followed by a delayed NMDA receptor-dependent cell death measured 24 h later. Extracellular signal-regulated protein kinase (ERK1/2), c-jun N-terminal kinase (JNK) and the kinase Akt/PKB may regulate neuronal viability in response to oxidative insults. Using phospho-specific antibodies, a 15-min stimulation of neurones with H(2)O(2) (100 microm - 1 mm) produced a concentration-dependent phosphorylation of ERK1/2 and Akt/PKB that was partly dependent on extracellular Ca(2+) and phosphatidylinositol 3-kinase (PI3-K). Higher concentrations of H(2)O(2) (1 mm) also stimulated a phosphorylation of JNK which was totally dependent on extracellular Ca(2+) but not PI3-K. H(2)O(2)-induced phosphorylation of ERK1/2, Akt/PKB or JNK were unaffected by the NMDA channel blocker MK801. Blocking ERK1/2 activation with the upstream inhibitor U0126 (10 microm) enhanced H(2)O(2)-induced (100-300 microm range) neurotoxicity and inhibited H(2)O(2)-mediated phosphorylation of the cyclic AMP regulatory binding protein (CREB), suggesting that ERK1/2 signals to survival under these conditions. At higher concentrations (mm), H(2)O(2)-stimulated a phosphorylation of c-jun. It is likely, therefore, that subjecting neurones to moderate oxidative-stress recruits pro-survival signals to CREB but during severe oxidative stress pro-death signals through JNK and c-jun are dominant.  相似文献   

16.
Signaling pathways involved in oxidative stress-induced inhibition of osteoblast differentiation are not known. We showed in this report that H(2)O(2) (0.1-0.2mM)-induced oxidative stress suppressed the osteoblastic differentiation process of primary rabbit bone marrow stromal cells (BMSC) and calvarial osteoblasts, manifested by a reduction of differentiation markers including alkaline phosphatase (ALP), type I collagen, colony-forming unit-osteoprogenitor (CFU-O) formation, and nuclear phosphorylation of Runx2. H(2)O(2) treatment stimulated phospholipase C-gamma1 (PLC-gamma1), extracellular signal-regulated kinase 1/2 (ERK1/2), and NF-kappaB signaling but inhibited p38 mitogen-activated protein kinase (MAPK) activation. In the presence of 20microM PD98059 or 50microM caffeic acid phenethyl ester (CAPE), specific inhibitor for ERKs or NF-kappaB, respectively, could significantly reverse the decrease of above-mentioned osteoblastic differentiation markers elicited by H(2)O(2) (0.1mM). Furthermore, PD98059 also suppressed H(2)O(2)-stimulated NF-kappaB signaling in this process. These data suggest that ERK and ERK-dependent NF-kappaB activation is required for oxidative stress-induced inhibition of osteoblastic differentiation in rabbit BMSC and calvarial osteoblasts.  相似文献   

17.
Although the toxin 6-hydroxydopamine (6-OHDA) is utilized extensively in animal models of Parkinson's disease, the underlying mechanism of its toxic effects on dopaminergic neurons is not completely understood. We examined the effects of 6-OHDA on the CNS-derived tyrosine hydroxylase expressing B65 cell line, with particular attention to the regulation of the extracellular signal-regulated protein kinases (ERK). 6-OHDA elicited a dose-dependent cytotoxicity in B65 cells. Toxic doses of 6-OHDA also elicited a biphasic pattern of ERK phosphorylation with a prominent sustained phase, a pattern that differed from that observed with hydrogen peroxide (H(2)O(2)) treatment. 6-OHDA-elicited ERK phosphorylation was blocked by PD98059, an inhibitor of the upstream mitogen activated protein kinase kinase (MEK) that phosphorylates and activates ERK. PD98059 also conferred protection against 6-OHDA cytotoxicity, but did not affect H(2)O(2) toxicity in B65 cells. These results suggest that ERK activation plays a direct mechanistic role in 6-OHDA toxicity, rather than representing a protective compensatory response, and raise the possibility that abnormal patterns of ERK activation may contribute to dopaminergic neuronal cell death.  相似文献   

18.
The protective role of trehalose against oxidative stress caused by hydrogen peroxide in Candida albicans has been investigated in the homozygous mutant ntc1Delta/ntc1Delta, disrupted in the NTC1 gene, which encodes the neutral (cytosolic) trehalase (Ntc1p). After a severe oxidative exposure (50 mM H(2)O(2)), both parental (CAI-4) and ntc1Delta/ntc1Delta exponential-phase cells stored large amounts of intracellular trehalose. In turn, the degree of cell survival was roughly equivalent in both strains, although slightly higher in ntc1Delta/ntc1Delta cultures. The mechanism of 'adaptive tolerance' was functional in the two strains. Thus, a gently oxidative pretreatment (5 mM H(2)O(2)) increased the recovery of cellular viability when it was followed by a severe challenge (50 mM H(2)O(2)); this phenomenon was accompanied by a significant elevation of the endogenous trehalose content. Oxidative stress also induced specific activation of the antioxidant enzymes catalase and glutathione reductase upon gentle oxidative treatment (5 mM H(2)O(2)), whereas superoxide dismutase activity was only activated upon prolonged exposure. Taken together, these results strongly suggest that in C. albicans neutral trehalase activity does not play an essential role in the protective response against oxidative stress. They also suggest that a diminished Ntc1p activity might favour the growth of C. albicans cells subjected to a strong oxidative exposure.  相似文献   

19.
Hu Y  Kang C  Philp RJ  Li B 《Cellular signalling》2007,19(2):410-418
Both PKC delta and ShcA have been implicated in cell response to oxidative stress [Y. Hu, X. Wang, L. Zeng, D.Y. Cai, K. Sabapathy, S.P. Goff, E.J. Firpo, B. Li, Mol Biol Cell., 16 (2005) 3705-3718, B. Li, X. Wang, N. Rasheed, Y. Hu, S. Boast, T. Ishii, K. Nakayama, K.I. Nakayama, S.P., Goff, Genes Dev, 18 (2004) 1824-1837, E. Migliaccio, M. Giorgio, S. Mele, G. Pelicci, P. Reboldi, P.P. Pandolfi, L. Lanfrancone, P.G. Pelicci, Nature, 402 (1999) 309-313], yet their relationship in the response has not been studied. Here we report that PKC delta interacts with ShcA and this interaction is promoted by H(2)O(2). PKC delta and ShcA are also colocalized in the cytoplasm and displayed co-translocation in response to H(2)O(2). Activated PKC delta was able to phosphorylate ShcA at Ser29, as determined by mass spectrometry. These results suggest that ShcA, p66 and p52, are substrates that interact with PKC delta. This phosphorylation is critical in H(2)O(2) induced ERK activation as reconstitution with ShcA Ser29A failed to rescue ERK activation of ShcA-/- MEFs, while ShcA could. In line with this conclusion, inhibition of PKC delta with inhibitors is able to diminish H(2)O(2) induced ERK activation in MEFs. These results suggest that the interaction between PKC delta and ShcA and the phosphorylation of ShcA at Ser29 play important roles in ERK activation in cell response to H(2)O(2).  相似文献   

20.
Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN) an endogenous ligand of both central-type benzodiazepine (CBR) and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H(2)O(2))-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo(1-8)[DLeu(5)]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H(2)O(2)-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H(2)O(2) of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H(2)O(2) on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号