首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phototherapy denotes the use of ultraviolet (UV) light in the management of several dermatoses. Most phototherapy regimens utilize ultraviolet radiation of different wavelenghts. Currently, irradiations with broadband UVB (290-320 nm), narrowband UVB (311-313 nm), 308 nm excimer laser, UVA 1 (340-400 nm), UVA with psoralen (PUVA), and extracorporeal photochemotherapy (photopheresis) are being used. The interplay of the various photobiologic pathways is far from being completely understood. Disordes that may benefit from such approach are numerous, with psoriasis, atopic dermatitis, cutaneous T-cell lymphomas, morphea, and vitiligo as main indications. The immunomodulatory effects of UVB radiation primarily affect the epidermis and superficial dermis, while UVA radiation affects mid and deep dermal components, especially blood vessels. UVB radiation is absorbed by endogenous chromophores, such as nuclear DNA, which initiates a cascade of events. Absorption of UV light by nucleotides causes the formation of DNA photoproducts and suppresses DNA synthesis. In addition UV light stimulates synthesis of prostaglandins and cytokines that play important roles in immune suppression. It may reduce the number of Langerhans cells, cutaneous T lymphocytes and mast cells in the dermis. UV radiation can also affect extranuclear molecular targets located in the cytoplasm and cell membrane. Immune suppression, alteration in cytokine expression, and cell cycle arrest may all contribute to the suppression of disease activity. PUVA is a form of chemophototherapy which uses UVA light to activate chemicals known as psoralens, hence psoralen ultraviolet A. The conjunction of psoralens with epidermal DNA inhibits DNA replication and causes cell cycle arrest. Psoralen photosensitization also causes an alteration in the expression of cytokines and cytokine receptors. Psoralens interact with RNA, proteins and other cellular components and indirectly modify proteins and lipids via singlet oxygen-mediated reactions or by generating of free radicals. Infiltrating lymphocytes are strongly suppressed by PUVA, with variable effects on different T-cell subsets. Psoralens and UV radiation also stimulate melanogenesis. Extracorporeal photopheresis is technique used in treatment of erythrodermic cutaneous lymphomas. It is very potent in induction of lymphocyte apoptosis. Despite the introduction of numerous effective systemic medications and biologic agents in dermatology, phototherapy remains a reliable, and often preferred option for several dermatoses.  相似文献   

2.
A comparison has been made of sensitivity to far (254 nm), middle (300--315 nm) and near (315--400 nm) UV radiation of 12 strains of E. coli and 2 strains of B. subtilis differing in DNA dark repair (DR) capability. The mechanisms controlled by uvrA, uvrB, polA, recA, lon, and lexA genes are very effective in cells, irradiated by far and middle UV, but by 15--70% less effective in those irradiated by near UV. As the unirradiated bacteria poorly repair the near UV damaged phages (T7, lambda, SPPI), the low bacterial DR level after UV irradiation seems to be due to the unrepairable photoproduct formation in DNA.  相似文献   

3.
The filamentous cyanobacterium Fischerella muscicola TISTR8215 was tested for the presence of ultraviolet (UV)‐absorbing mycosporine‐like amino acids (MAAs) and their induction by UV radiation. Reverse‐phase high performance liquid chromatographic coupled with photodiode‐array detection studies revealed the presence of a MAA having an absorption maximum at 332 nm and a retention time of around 16.1 min. Based on absorption maximum, the compound was designated as M‐332. This is the first report for the occurrence of a MAA and its inducibility as influenced by UV radiation in Fischerella strains studied so far. Photosynthetically active radiation (PAR) had no significant impact on MAA induction. PAR + UV‐A radiation significantly induced the synthesis of M‐332; however, PAR + UV‐A + UV‐B radiation conferred highest impact on MAA synthesis. The cultures exposed to alternate light and dark conditions showed the induction of M‐332 synthesis mostly during the light period in contrast to the decreased levels of M‐322 during the dark period suggesting a circadian induction of its synthesis. Overall results indicate that F. muscicola may protect itself from deleterious short wavelength UV radiation by synthesizing the photoprotective compounds particularly during summer time in its natural brightly‐lit habitats.  相似文献   

4.
Photoreactivation (PR) was measured after inactivation by far (254 nm), middle (300-315 nm) and near (315-400 nm) UV radiation of Paramecium caudatum and 8 strains of Escherichia coli differing in PR and dark repair capability. PR volume was high and practically the same after irradiation by far and middle UV, but PR was not observed in near UV-inactivated cells of all the strains. It is proposed that pyrimidine dimers are not significant in near UV lethal lesions in cells, as near UV-irradiated phages (T7 and lambdacI 857) are not photoreactivated in undamaged host bacterial cells.  相似文献   

5.
6.
Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision.  相似文献   

7.
Inactivation of seven strains derived fromEscherichia coli B differing in their capacity to repair damage to their DNA (exc, pol, rec) after irradiation with far (254 nm) and middle and near (300 to 380 and 320–400 nm) UV light was investigated. The same bacterial strains were also used as hosts for the UV-irradiated pliage T7. The damage induced in bacteria and the phage by the near UV radiation was repaired only to a lesser extent by the investigated repair mechanisms or was not repaired at all.  相似文献   

8.
The action of VUV and far UV (lambda greater than 240 nm) radiation of aqueous solutions of total histone by means of electrophoresis method is compared. By VUV photolysis the more effective destruction of HI and HIA histone fractions is determined. It may be explained by interaction of total histone with water radicals (H, OH) formed by VUV photodissociation (indirect mechanism). By VUV irradiation of plasmid pBR-322 DNA in aqueous solutions the indirect action mechanism of single strand breaks in DNA is established.  相似文献   

9.
10.
The combined effect of 8-methoxypsoralen (8-MOP) and ultraviolet (UV) radiation on the ability of an irradiated mammalian cell (CV-1) to reactivate UV-irradiated mammalian virus (Herpes simplex) was tested. Prior treatment of cells with 8-MOP was found to increase Radiation-Enhanced Reactivation (RER) at one wavelength (297 nm) in the far ultraviolet but not at others (240-289 nm). This same treatment induced RER in the near UV (302-370 nm) and the visible region (380-400 nm). An action spectrum for the photo-sensitized induction of this cellular parameter was obtained. This action spectrum is consistent with the absorption spectrum for 8-MOP and the theory that damage to DNA is, at least in part, responsible for Radiation-Enhanced Reactivation.  相似文献   

11.
The release of protein from the Zaidela ascitic hepatoma cells following irradiation with physiological doses of short-wave (254 nm) and long-wave (300--380 nm) UV light (far and near UV radiation) has been investigated. The amount of protein increases with dose making, upon the maximal radiation damage, 180 and 2 per cent of the protein against, resp., the protein amount releasing from non-treated cells and the total protein of the intact cell. The far UV light is by one order more efficient than the near UV light. Irradiation of cells with the former and the latter results in the release of high and low molecular proteins, resp. The near UV irradiation brings about heavier releasing of proteins than does the far UV light.  相似文献   

12.
The value of the unscheduled DNA synthesis after the combined effect of UV radiation and methyl methanesulfonate (MMS) was considerably lower than that upon exposure to UV radiation alone and after two-hour incubation of the culture. These differences were insignificant after 26 h incubation. The result can be attributed to the alkylating effect of MMS on the repair DNA polymerase. With MMS delivered prior to UV irradiation there was an even larger decrease in the unscheduled DNA synthesis with both 2- and 26-hour incubation. The data obtained can be explained by the fact that MMS inhibits an excision endonuclease.  相似文献   

13.
Irradiation of the Zaidela ascite hepatoma cells with physiological doses of shortwave length (254 nm) and longwave length (300-380 nm) UV light (far and near UV radiation) is accompanied by the release of ribonucleoproteins (RNP) from the cells, whose amounts increase with dose. Irradiation with far and near UV light leads to the release of high-molecular and low-molecular RNP, respectively. No deoxyribonucleoprotein were found among the released substances. Non-protein fractions, released from irradiated cells, contain carbohydrate-like substances. At maximum far and near UV doses the amounts of these substances constitute 180-190% of the control and 6% of their amount in intact cells. After irradiation with far UV light, relatively high-molecular carbohydrates are released, while near UV light treatment induces the release of low-molecular carbohydrates. The criteria tested show that the efficiency of far UV light exceeds that of near UV light by one order.  相似文献   

14.
We have directly compared in resting human mononuclear leukocytes the DNA repair effects caused by ADP-ribosyl transferase (ADPRT) activity following DNA damage induction by gamma radiation, UV radiation, ethylene oxide (EO) and N-acetoxy-2-acetylaminofluorene (NA-AAF). The presence of inhibitors of ADPRT during the quantitation of unscheduled DNA synthesis (UDS) resulted in about a 2-fold increase of UDS when induced by gamma radiation, UV radiation or EO. The stimulation of UDS by EO, UV- or gamma-radiation in the presence of an ADPRT inhibitor was equally strong whether 1 mM or 10 mM hydroxyurea was used to suppress scheduled DNA synthesis. The level of NA-AAF induced UDS was not affected by inhibitors of ADPRT. In addition, direct estimation of ADPRT activity revealed that at doses giving maximal UDS, NA-AAF damage did not induce a measurable enzymatic activity whereas gamma-radiation, UV radiation and EO all showed a significant dose response increase. We have interpreted our data to mean that NA-AAF induced UDS estimates DNA repair relating mainly to DNA lesions that are recognized with difficulty, and hence, the rate of endonuclease-induced DNA strand break accumulation is not sufficient to allow a stimulation of ADPRT and affect the quantitation of UDS.  相似文献   

15.
Abstract Exposure of Xanthomonas oryzae pv. oryzae cells to 254 nm UV radiation resulted in an alteration of protein phosphorylation. Labelling of the phosphohistidine-containing proteins with molecular masses of 81 and 32 kDa, named p81 and p32, was rapidly reduced following UV irradiation in the early exponential cells, but the decrease was not detected in mid-exponential cells. Mitomycin C, a DNA replication inhibitor, and rifampicin, a drug generally used to inhibit RNA synthesis and DNA replication, were also found to reduce the histidyl phosphorylation. However, this alteration of protein phosphorylation was not hindered by chloramphenicol treatment. A possible role for these histidyl phosphopfoteins in sensing UV light is proposed.  相似文献   

16.
The damaging effects of light that was emitted by a DRSh250-3 mercury lamp on the DNA of mouse blood leukocytes was studied in vitro. It was shown that the main DNA damage is due to the action of UVB radiation (280–320 nm). Under the combined effects of the UV radiation and the orange–red fluorescent component it was found that the additional fluorescent light with the spectral maximum at 625 nm from nanoluminophore materials (quantum dots that are based on CdSe/ZnS, CdSe/CdS/ZnS) protected the cellular DNA from the damaging effect of UV radiation. Using nanomolar concentrations of hydrogen peroxide, the hypothesis of the role of reactive oxygen species in the protective effects of the red–orange light was tested in vitro. It was shown for the first time that the mechanisms of the protective effects are associated with the induction of an adaptive response by nanomolar concentrations of hydrogen peroxide that are induced by the orange–red light.  相似文献   

17.
Summary Mesophyll protoplasts isolated fromPetunia hybrida were subjected to UV radiation (280–360 nm) in an attempt to assess whether (a) UV radiation has an effect on cortical microtubule organization, (b) UV radiation affects the progression of protoplasts through the cell cycle, and (c) there is a connection between the effect of UV radiation on cell division and the polymerization state of the microtubules. The proto plasts were irradiated with the following UV doses: 4, 8, 12, and 24mmol photons/m2, 30 min after isolation. Cell cycle analysis and immuno-localization of microtubules were carried out 0, 24, 48, and 72 h after irradiation. The length of cortical microtubules was determined after irradiation and in corresponding controls. We found that UV radiation induced breaks in cortical microtubules resulting in shorter fragments with increasing dose. Also, the protoplasts were delayed in their progression through the cell cycle, with G1 and G2 phases being affected as well as the S phase. The commencement of DNA synthesis in the irradiated protoplasts followed the re-establishment of a microtubule network. At 48 h after irradiation the protoplasts in all treatments, except for the 24 mmol/m2, had cortical microtubules of similar length, and at 72 h after irradiation only the protoplasts that had received 24 mmol photons/m2 had not started dividing.Abbreviations BSA bovine serum albumin - DMSO dimethyl sulfoxide - FDA fluorescein diacetate - MT microtubules - MTSB microtubule stabilizing buffer - PAR photosynthetically active radiation (400–700 nm) - PBS phosphate buffered saline - UV ultraviolet  相似文献   

18.
Bacterial endospores are 1 to 2 orders of magnitude more resistant to 254-nm UV (UV-C) radiation than are exponentially growing cells of the same strain. This high UV resistance is due to two related phenomena: (i) DNA of dormant spores irradiated with 254-nm UV accumulates mainly a unique thymine dimer called the spore photoproduct (SP), and (ii) SP is corrected during spore germination by two major DNA repair pathways, nucleotide excision repair (NER) and an SP-specific enzyme called SP lyase. To date, it has been assumed that these two factors also account for resistance of bacterial spores to solar UV in the environment, despite the fact that sunlight at the Earth's surface consists of UV-B, UV-A, visible, and infrared wavelengths of approximately 290 nm and longer. To test this assumption, isogenic strains of Bacillus subtilis lacking either the NER or SP lyase DNA repair pathway were assayed for their relative resistance to radiation at a number of UV wavelengths, including UV-C (254 nm), UV-B (290 to 320 nm), full-spectrum sunlight, and sunlight from which the UV-B portion had been removed. For purposes of direct comparison, spore UV resistance levels were determined with respect to a calibrated biological dosimeter consisting of a mixture of wild-type spores and spores lacking both DNA repair systems. It was observed that the relative contributions of the two pathways to spore UV resistance change depending on the UV wavelengths used in a manner suggesting that spores irradiated with light at environmentally relevant UV wavelengths may accumulate significant amounts of one or more DNA photoproducts in addition to SP. Furthermore, it was noted that upon exposure to increasing wavelengths, wild-type spores decreased in their UV resistance from 33-fold (UV-C) to 12-fold (UV-B plus UV-A sunlight) to 6-fold (UV-A sunlight alone) more resistant than mutants lacking both DNA repair systems, suggesting that at increasing solar UV wavelengths, spores are inactivated either by DNA damage not reparable by the NER or SP lyase system, damage caused to photosensitive molecules other than DNA, or both.  相似文献   

19.
A study was made of the effect of the low intensity (10(-6)--10(3)/cm3) high repetition rate (pulse duration 18 nseconds, repetition rate 10 KHz) UV radiation (2nd harmonic of Cu vapour laser, lambda = 271.2 nm) on proliferating and resting cells (HeLa and fibroblast-like cells of Chinese hamster 431). The treatment within the dose range from 0.05 to 5 J/m3 stimulates DNA synthesis in the resting cells rather than in the proliferating ones. It was shown autoradiographically that, within the same dose range, the number of synthesizing cells increased in 2.5 hour.  相似文献   

20.
To study the role of different DNA repair genes in the resistance of Deinococcus radiodurans to mono- and polychromatic UV radiation, wild-type strain and knockout mutants in RecA, PprA, and IrrE of D. radiodurans were irradiated with UV-C (254 nm), UV-(A + B) (280–400 nm) and UV-A (315–400 nm) radiation, and survival was monitored. The strain deficient in recA was highly sensitive to UV-C radiation compared to the wild-type, but showed no loss of resistance against irradiation with UV-(A + B) and UV-A, while pprA and irrE-deficient strains exhibited elevated sensitivity to UV-A and UV-(A + B) radiation. These results suggest that the repair of DNA double-strand breaks is essential after treatment with highly energetic UV-C radiation, whereas protection from oxidative stress may play a greater role in resistance to environmentally relevant UV radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号