首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Even when confined to the same spatial location, flickering and steady light evoke very different conscious experiences because of their distinct temporal patterns. The neural basis of such differences in subjective experience remains uncertain . Here, we used functional MRI in humans to examine the neural structures involved in awareness of flicker. Participants viewed a single point source of light that flickered at the critical flicker fusion (CFF) threshold, where the same stimulus is sometimes perceived as flickering and sometimes as steady (fused) . We were thus able to compare brain activity for conscious percepts that differed qualitatively (flickering or fused) but were evoked by identical physical stimuli. Greater brain activation was observed on flicker (versus fused) trials in regions of frontal and parietal cortex previously associated with visual awareness in tasks that did not require detection of temporal patterns . In contrast, greater activation was observed on fused (versus flicker) trials in occipital extrastriate cortex. Our findings indicate that activity of higher-level cortical areas is important for awareness of temporally distinct visual events in the context of a nonspatial task, and they thus suggest that frontal and parietal regions may play a general role in visual awareness.  相似文献   

2.
The usefulness of peeping in indexing attachment to visual and auditory stimuli was confirmed in chicks between 18 and 30 h post-hatch. Greater attractiveness of the auditory stimulus was associated with a more marked initial reduction in peeping after auditory stimulus presentation, suggesting a greater attentional impact, and with greater effectiveness in reducing peeping during repeated stimulus presentations. There was no difference between the two stimuli in effects on peeping before or shortly after the initial approach to the stimuli. Of additional interest was the observation of a sharp rise in peeping immediately preceding the increased activity associated with initial approach. The possible relationship between peeping and arousal was considered.  相似文献   

3.
The modality of a stimulus and its intermittency affect time estimation. The present experiment explores the effect of a combination of modality and intermittency, and its implications for internal clock explanations. Twenty-four participants were tested on a temporal bisection task with durations of 200-800 ms. Durations were signaled by visual steady stimuli, auditory steady stimuli, visual flickering stimuli, and auditory clicks. Psychophysical functions and bisection points indicated that the durations of visual steady stimuli were classified as shorter and more variable than the durations signaled by the auditory stimuli (steady and clicks), and that the durations of the visual flickering stimuli were classified as longer than the durations signaled by the auditory stimuli (steady and clicks). An interpretation of the results is that there are different speeds for the internal clock, which are mediated by the perceptual features of the stimuli timed, such as differences in time of processing.  相似文献   

4.
Extracellular recordings were carried out in the visual cortex of behaving monkeys trained on a fixation/detection task, during which a target light was displayed stationary or suddenly moving on a tangent translucent screen. The responses of visual cortical cells to fast moving stimuli during steady fixation and those obtained during rapid eye movements (saccades) which moved their receptive field across a stationary stimulus, were studied. Areas V1 and V2 were explored. When tested with rapidly moving stimuli (500 deg/sec) during steady fixation, neurons in each area behaved in almost the same way. About one fourth of them were activated, the remainder showing either no response (little more than a half of them) or a reduction of the spontaneous firing rate. In both areas, some of the neurons activated during steady fixation did not respond or responded very weakly during eye motion at saccadic velocity (500 +/- 50 deg/sec). Neurons of this type, which we refer to as 'real motion' cells, could somehow contribute to the maintenance of visual stability during the execution of large eye movements.  相似文献   

5.
《IRBM》2022,43(6):621-627
Objective: Steady-State Visual Evoked Potentials based Brain-Computer Interfaces (SSVEP-based BCIs) systems have been shown as promising technology due to their short response time and ease of use. SSVEP-based BCIs use brain responses to a flickering visual stimulus as an input command to an external application or device, and it can be influenced by stimulus properties, signal recording, and signal processing. We aim to investigate the system performance varying the stimuli spatial proximity (a stimulus property).Material and methods: We performed a comparative analysis of two visual interface designs (named cross and square) for an SSVEP-based BCI. The power spectrum density (PSD) was used as feature extraction and the Support Machine Vector (SVM) as classification method. We also analyzed the effects of five flickering frequencies (6.67, 8.57, 10, 12 e 15 Hz) between and within interfaces.Results: We found higher accuracy rates for the flickering frequencies of 10, 12, and 15 Hz. The stimulus of 10 Hz presented the highest SSVEP amplitude response for both interfaces. The system presented the best performance (highest classification accuracy and information transfer rate) using the cross interface (lower visual angle).Conclusion: Our findings suggest that the system has the highest performance in the spatial proximity range from 4° to 13° (visual angle). In addition, we conclude that as the stimulus spatial proximity increases, the interference from other stimuli reduces, and the SSVEP amplitude response decreases, which reduces system accuracy. The inter-stimulus distance is a visual interface parameter that must be chosen carefully to increase the efficiency of an SSVEP-based BCI.  相似文献   

6.
A common view about visual consciousness is that it could arise when and where activity reaches some higher level of processing along the cortical hierarchy. Reports showing that activity in striate cortex can be dissociated from awareness , whereas the latter modulates activity in higher areas , point in this direction. In the specific case of visual motion, a central, "perceptual" role has been assigned to area V5: several human and monkey studies have shown V5 activity to correlate with the motion percept. Here we show that activity in this and other higher cortical areas can be also dissociated from perception and follow the physical stimulus instead. The motion information in a peripheral grating modulated fMRI responses, despite being invisible to human volunteers: under crowding conditions , areas V3A, V5, and parietal cortex still showed increased activity when the grating was moving compared to when it was flickering. We conclude that stimulus-specific activation of higher cortical areas does not necessarily result in awareness of the underlying stimulus.  相似文献   

7.
Dopamine (DA) is an important neuromodulator in the visual system. The release of DA in the retina largely depends on environmental lighting conditions. Most previous studies have assessed the effect of illumination on retinal DA or its metabolites using homogenates or in vitro preparations. This study was designed to investigate the effect of transitions between lighting conditions—from dark to steady or flickering light and vice versa—on retinal DA release in zebrafish using in vivo microdialysis. The transition from dark to flickering light increased DA release, whereas the transition from flickering light to dark decreased it. This latter effect depended on time of day within the light period, e.g., it was strongest in the late afternoon. When using steady light, none of these effects were seen. Our study also demonstrates that in vivo microdialysis can successfully be applied to the investigation of retinal DA release in zebrafish.  相似文献   

8.
以人视觉诱发电位(VEP)反应为指标,在视野的不同位置测定了VEP对四个方位的闪烁方波光栅刺激(时间频率2.9Hz,空间频率1.4c/deg,对比度0.94)的反应幅度。在距中央凹20°视角同心圆的八个刺激位置上,VEP反应幅度对与向心线垂直方位的光栅刺激(同心圆的切线方向),有统计意义上的优势。这一规律在垂直、水平向心线上尤为明显。从总体上未发现VEP反应幅度与刺激光栅方位有着明显的关系。这说明在人视野周边区,VEP反应幅度与光栅方位和向心线的夹角(偏向角)相关,而与光栅的绝对方位无关。在相同的刺激条件下,中央区的VEP反应幅度与刺激光栅方位之间也未发现明显关系。  相似文献   

9.
Stimulus duration is an important feature of visual stimulation. In the present study, response properties of bullfrog ON-OFF retinal ganglion cells (RGCs) in exposure to different visual stimulus durations were studied. By using a multi-electrode recording system, spike discharges from ON-OFF RGCs were simultaneously recorded, and the cells’ ON and OFF responses were analyzed. It was found that the ON response characteristics, including response latency, spike count, as well as correlated activity and relative latency between pair-wise cells, were modulated by different light OFF intervals, while the OFF response characteristics were modulated by different light ON durations. Stimulus information carried by the ON and OFF responses was then analyzed, and it was found that information about different light ON durations was more carried by transient OFF response, whereas information about different light OFF intervals were more carried by transient ON response. Meanwhile, more than 80 % information about stimulus durations was carried by firing rate. These results suggest that ON-OFF RGCs are sensitive to different stimulus durations, and they can efficiently encode the information about visual stimulus duration by firing rate.  相似文献   

10.
Properties of 187 neurons in the inferior wall of the cruciate sulcus, in an area where electrical stimulation evoked unidirectional saccadic eye movements, were investigated in waking cats. Of the total number 172 responded to visual stimulation. Neurons in the surface layers of the cortex responded to simple visual stimuli: light or dark spots or bars, both stationary and moving at speeds of around 30 deg/sec. These neurons showed no selectivity as regards stimulus orientation but sometimes behaved selectively toward the direction of their movements. In the intermediate layers the maximal neuronal response was obtained to a model of a bird flaping its wings. Neuronal responses in the depth of the cortex were characterized by selectivity to movement of stimuli toward or away from the animal in a certain part of the visual field, irrespective of whether a light stimulus was presented against a dark background or a dark stimulus against the light background. Responses to visual stimulation were exhibited only if the animal was in a state of activation, when the EEG showed desynchronization, and they were absent in a state of quite wakefulness. No responses were obtained to auditory or somatic stimulation. Responses to visual stimulation were not found in neurons of the medial wall of the brain beneath the cruciate sulcus, but responses were recorded to eye movements of definite size or orientation. It is postulated that at least two contiguous retinotopically organized zones exist in this part of the brain. Activity of one of them is connected with visual function, that of the other with eye movements.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 766–773, November–December, 1984.  相似文献   

11.
Preliminary results of a disjunctive procedure developed to ascertain the relative attractiveness for domestic chicks of auditory and visual stimuli are promising. A detailed account of the procedure and initial results is presented. Seventy-two Canadian Athens random bred chicks were tested at 24 or 36 h posthatch. A repetitive tone (4 per sec, 50 msec duration, 500 Hz) served as the auditory stimulus, and a flickering light (3.5 flashes per sec, 0.8 foot candle) served as the visual stimulus. An age-dependent change in the attractiveness of auditory and visual stimuli obtained with the disjunctive procedure. No change in stimulus preference obtained when the stimuli were presented individually.  相似文献   

12.
In this paper, we investigate the large-scale synchrony of EEG oscillatory bursts, during stimulation by a flickering square of light. Whereas most studies focus on averaged raw EEG responses, this study considers oscillatory events within EEG of single trials, which leads to various new insights. We recorded EEG signals before, during and after stimulation by a flickering square of light in medium (16 Hz) and high frequency (32 Hz) ranges. Similar oscillatory bursts, to those observed in spontaneous EEG, can be found in single-trial synchrony of steady state visual evoked potentials (SSVEP). These bursts are extracted from the EEG of single trials using bump modeling. Stochastic event synchrony method is applied to those events, which quantifies synchronies of oscillatory bursts on a large-scale basis. Those oscillatory patterns have a significantly higher degree of co-occurrence during SSVEP, uncorrelated with ongoing signal synchrony. It means that EEG oscillatory patterns are presumably an outcome of brain activity, rather than a mere side effect of ongoing EEG. They undergo a consistent reorganization during visual stimulation, preferentially along the visual pathway, depending on magno or parvo stimulations. Flickering stimuli may induce some cognitive side-effects depending on the stimulation frequency.
Francois B. VialatteEmail:
  相似文献   

13.
How do humans perceive the passage of time and the duration of events without a dedicated sensory system for timing? Previous studies have demonstrated that when a stimulus changes over time, its duration is subjectively dilated, indicating that duration judgments are based on the number of changes within an interval. In this study, we tested predictions derived from three different accounts describing the relation between a changing stimulus and its subjective duration as either based on (1) the objective rate of changes of the stimulus, (2) the perceived saliency of the changes, or (3) the neural energy expended in processing the stimulus. We used visual stimuli flickering at different frequencies (4–166 Hz) to study how the number of changes affects subjective duration. To this end, we assessed the subjective duration of these stimuli and measured participants'' behavioral flicker fusion threshold (the highest frequency perceived as flicker), as well as their threshold for a frequency-specific neural response to the flicker using EEG. We found that only consciously perceived flicker dilated perceived duration, such that a 2 s long stimulus flickering at 4 Hz was perceived as lasting as long as a 2.7 s steady stimulus. This effect was most pronounced at the slowest flicker frequencies, at which participants reported the most consistent flicker perception. Flicker frequencies higher than the flicker fusion threshold did not affect perceived duration at all, even if they evoked a significant frequency-specific neural response. In sum, our findings indicate that time perception in the peri-second range is driven by the subjective saliency of the stimulus'' temporal features rather than the objective rate of stimulus changes or the neural response to the changes.  相似文献   

14.
The present study examined the acute behavioral responses of pigeons to separation from conspecifics and exposure to an unfamiliar environment (UE). The effects of (1) repeated exposure to the UE; (2) visual isolation from surroundings, or saline injections; and (3) diazepam treatment (i.p., 0.25, 0.75, 2.5 or 7.5 mg/kg) before the trial were also examined. UE exposure evoked intense ballistic head movements (peeping), gradually replaced with angular head movements (AHM), both associated with immobility of the trunk and legs. These behaviors failed to habituate after three trials (7-day intertrial intervals). Visual isolation from the surroundings and saline injection prior to exposure to the UE increased the AHM and reduced peeping. Doses of diazepam (0.25 and 0.75 mg/kg) that have demonstrated anti-conflict effects in other tests did not affect the behavioral responses to the UE. Diazepam at 2.5 and 7.5 mg/kg doses consistently increased time spent in immobility. These data suggest that peeping, although expressed in potentially threatening or harmful situations appears not to be a fear-motivated behavior or, alternatively, this specific behavioral response is not diazepam sensitive.  相似文献   

15.
Electrical potentials from the eye (ERG) and from the contralateral visual cortex were recorded in response to flashes of white and of colored light of various intensities and durations. The evoked potentials were found to parallel the behavior of the ERG in several significant respects. Selective changes in the ERG brought about by increasing the light intensity and by light adaptation led to parallel selective changes in the cortical responses. The dual waves (b1, b2) of the ERG were found to have counterparts in two cortical waves (c1, c2) which, in respect to changes in light intensity and to light adaptation, behaved analogously to the two retinal components. The responses evoked at high intensity showed only the diphasic c1-potential. As stimulus intensity was lowered the c1-wave decreased in magnitude and a delayed c2-component appeared. The c2-potential increased in amplitude as light intensity of the flash was further reduced. Eventually the c2-wave, too, decreased as stimulus reduction continued. There was no wave length specificity in regard to either the duplex b-waves or duplex cortical waves. Both appeared at all wave lengths from 454 mµ to 630 mµ. The two cortical waves evoked by brief flashes of colored light showed all the behavior to changes in stimulus intensity and to light adaptation that occurred with white light.  相似文献   

16.
17.
Unit and network activity of neurons in the visual, sensorimotor, and frontal cortical areas and dorsal striatum was investigated in cats under conditions of choice of the reinforcement value depending on its delay. The animals did not differ from each other in behavior. After immediate or delayed responses cats got low- or highly-valuable reinforcement, respectively. Single-unit activity in the visual and sensorimotor cortical areas and dorsal striatum was similar during performance of immediate and delayed responses. However, significant inhibition was observed in the frontal neurons during the delay period. The network activity of visual and frontal cortex displayed smaller number of interneuronal interactions during delayed responses as compared to immediate reactions. The network activity of neurons in the brain structures under study pointed to the interstructural interaction, but only during delayed reactions, steady interneuronal communication was observed between the frontal cortex and dorsal striatum. Thus, both types of estimation of cellular activity revealed differences in the ensemble organization during different types of behavior and showed specific reactions of neuronal ensembles.  相似文献   

18.
Acute experiments on cats anesthetized with pentobarbital and immobilized with diplacin or listhenon showed that visceral and somatic excitation may either facilitate or inhibit single unit activity in the lateral geniculate body evoked by photic stimulation. The manifestations of facilitation were: a modulatory type of enhancement of responses of silent neurons and neurons with a low level of spontaneous activity; enhancement of responses accompanied by simultaneous depression of spontaneous activity — a sensory contrast effect; enhancement of long-latency responses; appearance of a short-latency discharge from cells with an inhibitory response to light; the appearance of responses to light in neurons not responding previously or stabilization of responses in neurons responding to light irregularly. The inhibitory effects were manifested as immediate inhibition of responses, usually long-latency, and the filling up of the inhibitory pauses of the response to light with spikes, leading to a decrease in the signal-noise ratio. Somatic stimulation was more effective and more frequently evoked facilitation of responses to light (in 74% of cells). Similar results were obtained by stimulation of the mesencephalic reticular formation. Visceral excitation gave rise to facilitatory and inhibitory effects to an almost equal degree. The results show that excitation arising as the result of visceral and somatic stimulation affects the conduction of visual information in the neuronal system of the lateral geniculate body.Ivano-Frankovsk Medical Institute. Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 6, pp. 636–643, November–December, 1973.  相似文献   

19.
ABSTRACT. Temporal resolution of freely-flying bees was measured by training bees, Apis mellifera (Linn.), to discriminate between a steady light and a flickering light. Two kinds of experiments were conducted: those using a homochromatic flicker, in which the intensity of the flickering light varied periodically with time; and ones using a heterochromatic flicker, in which the colour of the flickering light varied periodically. In either case, the time-averaged properties (intensity and colour) of the flickering light matched those of the steady light, and the bees' ability to discriminate between the two stimuli was measured for various flicker frequencies. The results indicate that bees perform poorly in the homochromatic flicker experiments, regardless of the colour of the light (u.v., blue or green), but well in those with heterochromatic flicker. Heterochromatic flicker experiments using various pairwise combinations of the colours U.V., blue and green (corresponding to the three known spectral receptor-types in the bee's retina) reveal that temporal resolution is much better when blue is one of the component colours, than when it is not. The simplest interpretation of the results is in terms of colour channels possessing different response speeds. Heterochromatic flicker promises to be a useful tool in investigating the temporal properties of colour vision in bees.  相似文献   

20.
Haynes JD  Rees G 《Current biology : CB》2005,15(14):1301-1307
Can the rapid stream of conscious experience be predicted from brain activity alone? Recently, spatial patterns of activity in visual cortex have been successfully used to predict feature-specific stimulus representations for both visible and invisible stimuli. However, because these studies examined only the prediction of static and unchanging perceptual states during extended periods of stimulation, it remains unclear whether activity in early visual cortex can also predict the rapidly and spontaneously changing stream of consciousness. Here, we used binocular rivalry to induce frequent spontaneous and stochastic changes in conscious experience without any corresponding changes in sensory stimulation, while measuring brain activity with fMRI. Using information that was present in the multivariate pattern of responses to stimulus features, we could accurately predict, and therefore track, participants' conscious experience from the fMRI signal alone while it underwent many spontaneous changes. Prediction in primary visual cortex primarily reflected eye-based signals, whereas prediction in higher areas reflected the color of the percept. Furthermore, accurate prediction during binocular rivalry could be established with signals recorded during stable monocular viewing, showing that prediction generalized across viewing conditions and did not require or rely on motor responses. It is therefore possible to predict the dynamically changing time course of subjective experience with only brain activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号