首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular dynamics and structural organization of mouse epidermal keratin intermediate filaments (IF) have been studied via solid-state nuclear magnetic resonance (NMR) experiments performed on IF labeled both in vivo and in vitro with isotopically enriched amino acids. As a probe of the organization of the peripheral glycine-rich end domains of the IF, carbon-13 NMR experiments have been performed on subfilamentous forms (prekeratin) and on IF reassembled in vitro that had been labeled with either [1-13C]glycine or [2-13C]glycine, as more than 90% of the glycines of the keratins are located in the end domains. Although cross-labeling to seryl residues was observed, the proportion of serine located in the end domains is nearly the same as that for glycine. Measurements of carbon relaxation times, nuclear Overhauser enhancements, and signal intensities show that the motions of the peptide backbone in the end domains are effectively isotropic, with average correlation times distributed over the range of 0.2-20 ns. These results indicate that the end domains of IF are remarkably flexible and have little or no structural order. To probe the structural organization of the coiled-coil rod domains of the IF, separate samples of native keratin IF, raised in primary tissue culture, were labeled with L-[1-13C]leucine, L-[2H10]leucine, or L-[2,3,3-2H3]leucine, as greater than 90% of the leucyl residues of the keratin IF types studied are located in the coiled coils which form the central core of IF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
T Ouellet  P Levac  A Royal 《Gene》1988,70(1):75-84
We have isolated a clone, pKA56, from a cDNA library prepared from poly(A)/RNA of F9ACc19 cells. Northern-blot analysis showed that this clone recognizes a 1.9-kb mRNA which is expressed strongly in F9 differentiated cells but only faintly detected in F9 stem cells. Sequence determination revealed that this mRNA codes for EndoA, the murine homologue of the human type-II keratin No. 8. This is the first report of the complete coding sequence of a mammalian keratin No. 8. Comparison of mouse EndoA with keratin No. 8 of humans, cows and frogs indicated a strong evolutionary conservation. The first 16 amino acid residues of the N-terminal domain of EndoA are also homologous to other type-II keratins and, to a lesser extent, to other intermediate filament (IF) proteins. Furthermore, this region is predicted to adopt an amphiphilic alpha-helical conformation similar to that of mitochondrial signal peptides. Conservation of that sequence and of other segments of the end domains of EndoA supports the idea that those regions are implicated in the specific organization of the IF network in the cell and in the interactions of IF with other cell constituents.  相似文献   

3.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

4.
The bullous pemphigoid antigen 1 (BP230) and desmoplakin (DP) are members of the plakin protein family of cytolinkers. Despite their homology, their COOH termini selectively bind distinct intermediate filaments (IFs). We studied sequences within their COOH termini required for their interaction with the epidermal keratins K5/K14, the simple epithelial keratins K8/K18, and type III IF vimentin by yeast three-hybrid, cell transfection, and overlay assays. The results indicate that BP230 interacts with K5/K14 but not with K8/K18 or vimentin via a region encompassing both the B and C subdomains and the COOH extremity, including a COOH-terminal eight-amino-acid stretch. In contrast, the C subdomain with the COOH-terminal extremity of DP interacts with K5/K14 and K8/K18, and its linker region is able to associate with K8/K18 and vimentin. Furthermore, the potential of DP to interact with IF proteins in yeast seems to be regulated by phosphorylation of Ser 2849 within its COOH terminus. Strikingly, BP230 and DP interacted with cytokeratins only when both type I and type II keratins were present. The head and tail domains of K5/K14 keratins were dispensable for their interaction with BP230 or DP. On the basis of our findings, we postulate that (1) the binding specificity of plakins for various IF proteins depends on their linker region between the highly homologous B and C subdomains and their COOH extremity and (2) the association of DP and BP230 with both epidermal and simple keratins is critically affected by the tertiary structure induced by heterodimerization and involves recognition sites located primarily in the rod domain of these keratins.  相似文献   

5.
From the nucleotide sequences of specific cDNA clones, we present partial amino acid sequences (75-90% of the total) of 67-kDa type II keratin subunits expressed in terminally differentiating mouse and human epidermis. Analysis of the sequence information reveals that their secondary structures conform to the pattern common for all intermediate filament (IF) subunits. Together with the previously published sequence of the mouse 59-kDa type I keratin (Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C. (1983) Nature 302, 794-800) these data allow us to make comparisons between two keratins which are coexpressed in an epithelial cell type and which coassemble into the same IF. Moreover, these comparisons suggest a systematic plan for the general organization of the end domains of other keratin subunits. We postulate that each end domain consists of a set of subdomains which are distributed with bilateral symmetry with respect to the central alpha-helical domain. Type II (but not type I) keratins contain short globular sequences, H1 and H2, immediately adjacent to the central domain, that have been conserved in size and sequence and which account for most of the difference in mass between coexpressed type II and type I keratins. These are flanked by subdomains V1 and V2 that are highly variable in both length and sequence, often contain tandem peptide repeats, and are conspicuously rich in glycines and/or serines. At the termini are strongly basic subdomains (N and C, respectively) that are variable in sequence. Among keratins of a given type, their variability in mass appears to reside in the size of their V1 and V2 subdomains. However, coexpressed type I and type II keratins have generally similar V1 and/or V2 sequences. By virtue of the ease with which large portions of these subdomain sequences can be removed from intact keratin IF by limited proteolysis, we hypothesize that they lie on the periphery of the IF where they participate in interactions with other constituents of epithelial cells.  相似文献   

6.
Recombinant DNA technology has been used to analyze the first step in keratin intermediate filament (IF) assembly; i.e., the formation of the double stranded coiled coil. Keratins 8 and 18, lacking cysteine, were subjected to site specific in vitro mutagenesis to change one amino acid in the same relative position of the alpha-helical rod domain of both keratins to a cysteine. The mutations lie at position -36 of the rod in a "d" position of the heptad repeat pattern, and thus air oxidation can introduce a zero-length cystine cross-link. Mutant keratins 8 and 18 purified separately from Escherichia coli readily formed cystine homodimers in 2 M guanidine-HCl, and could be separated from the monomers by gel filtration. Heterodimers with a cystine cross-link were obtained when filaments formed by the two reduced monomers were allowed to oxidize. Subsequent ion exchange chromatography in 8.5 M urea showed that only a single dimer species had formed. Diagonal electrophoresis and reverse phase HPLC identified the dimer as the cystine containing heterodimer. This heterodimer readily assembled again into IF indistinguishable from those obtained from the nonmutant counterparts or from authentic keratins. In contrast, the mixture of cystine-stabilized homodimers formed only large aberrant aggregates. However, when a reducing agent was added, filaments formed again and yielded the heterodimer after oxidation. Thus, the obligatory heteropolymer step in keratin IF assembly seems to occur preferentially at the dimer level and not during tetramer formation. Our results also suggest that keratin I and II homodimers, once formed, are at least in 2 M guanidine-HCl a metastable species as their mixtures convert spontaneously into heterodimers unless the homodimers are stabilized by the cystine cross-link. This previously unexpected property of homodimers explains major discrepancies in the literature on the keratin dimer.  相似文献   

7.
角蛋白是植物细胞中间纤维的主要成分。应用选择性抽提和生物化学技术,分离纯化了豌豆根尖细胞58-、52 kD、白菜子叶52kD和胡萝卜悬浮细胞64kD角蛋白,测定了它们的氨基酸组成,结果表明上述角蛋白与动物细胞中间纤维角蛋白的氨基酸组成有较大的相似性。比较了动、植物细胞角蛋白的肽谱,结果显示它们之间存在较大的差异,但是植物细胞间角蛋白的肽谱比较一致,这提示它们属于同一蛋白家族,为植物中间纤维及其角蛋白的存在提供了新的论据。  相似文献   

8.
《The Journal of cell biology》1996,135(4):1027-1042
We have identified a protein named pinin that is associated with the mature desmosomes of the epithelia (Ouyang, P., and S.P. Sugrue. 1992. J. Cell Biol. 118:1477-1488). We suggest that the function of pinin is to pin intermediate filaments to the desmosome. Therefore, pinin may play a significant role in reinforcing the intermediate filament- desmosome complex. cDNA clones coding for pinin were identified, using degenerative oligonucleotide probes that were based on the internal amino acid sequence of pinin for the screening of a cDNA library. Immunoblotting of expressed recombinant proteins with the monoclonal 08L antibody localized the 08L epitope to the carboxyl end of the protein. Polyclonal antibodies directed against fusion proteins immunoidentified the 140-kD protein in tissue extracts. Immunofluorescence analysis, using the antifusion protein antibody, demonstrated pinin at lateral epithelial boundaries, which is consistent with desmosomal localization. The conceptual translation product of the cDNA clones contained three unique domains: (a) a serine- rich domain; (b) a glutamine-proline, glutamine-leucine repeat domain; and (c) an acidic domain rich in glutamic acid. Although the 3' end of the open reading frame of the clone for pinin showed near identity to a partial cDNA isolated for a pig neutrophil phosphoprotein (Bellavite, P., F. Bazzoni, et al. 1990. Biochem. Biophys. Res. Commun. 170:915- 922), the remaining sequence demonstrated little homology to known protein sequences. Northern blots of mRNA from chicken corneal epithelium, MDCK cells, and various human tissues indicated that pinin messages exhibit tissue-specific variation in size, ranging from 3.2 to 4.1 kb. Genomic Southern blots revealed the existence of one gene for pinin, suggesting alternative splicing of the mRNA. Expression of the full-length cDNA clones in human 293 cells and monkey COS-7 cells demonstrated that a 140-kD immunoreactive species on Western blots corresponded to pinin. Pinin cDNA transfected into the transformed 293 cells resulted in enhanced cell-cell adhesion. Immunofluorescence staining revealed that the expressed pinin protein was assembled to the lateral boundaries of the cells in contact, which is consistent with the staining pattern of pinin in epithelial cells.  相似文献   

9.
I Hanukoglu  E Fuchs 《Cell》1983,33(3):915-924
We present the cDNA and amino acid sequences of a cytoskeletal keratin from human epidermis (Mr = 56K) that belongs to one of the two classes of keratins (Type I and Type II) present in all vertebrates. In these two types of keratins the central approximately 300 residue long regions share approximately 30% homology both with one another and with the sequences of other IF proteins. Within this region, all IF proteins are predicted to contain four helical domains demarcated from one another by three regions of beta-turns. The amino and carboxy termini of the Type II keratin are very different from those of microfibrillar keratins and other nonkeratin IF proteins. However, they contain unusual glycine-rich tandem repeats similar to the amino terminus of the Type I keratin. Thus the size heterogeneity among keratins appears to be a result of differences in the length of the terminal ends rather than the structurally conserved central region.  相似文献   

10.
Two novel cytoplasmic intermediate filament (IF) proteins (C and D) from the tunicate (urochordate) Styela are characterised as putative keratin orthologs. The coexpression of C and D in all epidermal cells and the obligatory heteropolymeric IF assembly of the recombinant proteins argue for keratin orthologs, but the sequences do not directly reveal which protein behaves as a keratin I or II ortholog. This problem is solved by the finding that keratin 8, a type II keratin from man or Xenopus, forms chimeric IF when mixed with Styela D. Mutant proteins of Styela D and keratin 8 with a single cysteine in equivalent positions show that these chimeric IF are, like vertebrate keratin filaments, based on the hetero coiled coil. We propose that Styela D retains, in spite of its strong sequence drift, important molecular features of type I keratins. By inference Styela C reflects a type II ortholog. We discuss that type I to III IF proteins are expressed along the chordate branch of metazoa.  相似文献   

11.
The cloning of three intermediate filament proteins expressed at the gastrula stage (kl, Y1, X1) extends the size of the IF multigene family of Branchiostoma to at least 13 members. This is one of the largest protein families established for the lancelet. Sequence comparisons indicate five keratin orthologs, three of type I (E1, k1, Y1) and two of type II (E2, D1). This assignment is confirmed by the obligatory heteropolymeric polymerisation behaviour of the recombinant proteins. In line with the hetero-coiled-coil principle IF are formed by any stoichiometric mixture of type I and II keratin orthologs. In spite of the strong sequence drift chimeric IF are formed between K8, a human keratin II, and two of the lancelet type I keratins. We discuss whether the remaining 8 IF proteins reflect three additional and potentially cephalochordate-specific subfamilies. The tissue-specific expression patterns of the 5 keratins and some other IF proteins were analysed by immunofluorescence in the adult. Keratins are primarily present in ectodermally derived tissues. Developmental control of the expression of some IF proteins is observed, but three keratins (k1, Y1, D1) and an additional IF protein (X1) detected at the gastrula stage are expressed throughout the life cycle.  相似文献   

12.
The "thread keratins (TK)" alpha and gamma so far have been considered highly specialized intermediate filament (IF) proteins restricted to hagfish. From lamprey, we now have sequenced five novel IF proteins closely related to TKalpha and TKgamma, respectively. Moreover, we have detected corresponding sequences in EST and genomic databases of teleosts and amphibians. The structure of the TKalpha genes and the positions of their deduced amino acid sequences in a phylogenetic tree clearly support their classification as type II keratins. The genes encoding TKgamma show a structure typical for type III IF proteins, whereas their positions in phylogenetic trees favor a close relationship to the type I keratins. Considering that most keratin-like sequences detected in the lancelet also exhibit a gene structure typical for type III IF proteins, it seems likely that the keratin gene(s) originated from an ancient type III IF protein gene. According to EST analyses, the expression of the thread keratins in teleost fish and amphibians may be particularly restricted to larval stages, which, in conjunction with the observed absence of TKalpha and TKgamma genes in any of the available Amniota databases, indicates a thread keratin function closely related to larval development in an aquatic environment.  相似文献   

13.
A cDNA clone of a keratin-related, intermediate filament protein, designated Endo B, was constructed from size-fractionated parietal endodermal mRNA and characterized. The 1466-nucleotide cDNA insert contains an open reading frame of 1272 nucleotides that would result in 5' and 3' noncoding sequences of 54 and 60 nucleotides, respectively. The predicted amino acid composition, molecular weight (47,400), and peptide pattern correlate well with data obtained on the isolated protein. The predicted amino acid sequence fits easily into the general domain structure suggested for all intermediate filament proteins with a unique amino-terminal head domain, a large conserved central domain of predominantly alpha-helical structure, and a relatively unique carboxyl-terminal or tail domain. Over the entire molecule, Endo B is 43% identical with human 52-kDa epidermal type I keratin. However, over two of the three regions contained in the central domain that are predicted to form coiled-coil structures, the Endo B is 54-68% identical with other type I keratin sequences. This homology, along with the presence of the completely conserved sequence DNARLAADDFR-KYE, which is found in all type I keratins, permits the unambiguous identification of Endo B as a type I keratin. Comparison of the Endo B sequence to other intermediate filament proteins reveals 22 residues which are identical in all intermediate filament proteins regardless of whether filament formation requires only one type of protein subunit (vimentin, desmin, glial fibrillar acidic protein, or a neurofilament protein) or two dissimilar types (type I and type II keratins). Endo B mRNA was detectable in RNA isolated from F9 cells treated with retinoic acid for 48 h. Approximately three to five genes homologous to Endo B were detected in the mouse genome.  相似文献   

14.
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.  相似文献   

15.
The intermediate filament cytoskeleton is composed of keratins in all epithelial cells and imparts mechanical integrity to these cells. However, beyond this shared function, the functional significance of the carefully regulated tissue- and differentiation-specific expression of the large keratin family of cytoskeletal proteins remains unclear. We recently demonstrated that expression of keratin K10 or K16 may regulate the phosphorylation of the retinoblastoma protein (pRb), inhibiting (K10) or stimulating (K16) cell proliferation (J. M. Paramio, M. L. Casanova, C. Segrelles, S. Mittnacht, E. B. Lane, and J. L. Jorcano, Mol. Cell. Biol. 19:3086-3094, 1999). Here we show that keratin K10 function as a negative modulator of cell cycle progression involves changes in the phosphoinositide 3-kinase (PI-3K) signal transduction pathway. Physical interaction of K10 with Akt (protein kinase B [PKB]) and atypical PKCzeta causes sequestration of these kinases within the cytoskeleton and inhibits their intracellular translocation. As a consequence, the expression of K10 impairs the activation of PKB and PKCzeta. We also demonstrate that this inhibition impedes pRb phosphorylation and reduces the expression of cyclins D1 and E. Functional and biochemical data also demonstrate that the interaction between K10 and these kinases involves the non-alpha-helical amino domain of K10 (NTerm). Together, these results suggest new and essential roles for the keratins as modulators of specific signal transduction pathways.  相似文献   

16.
Desmoplakin (DP), plakoglobin (PG), and plakophilin 1 (PP1) are desmosomal components lacking a transmembrane domain, thus making them candidate linker proteins for connecting intermediate filaments and desmosomes. Using deletion and site-directed mutagenesis, we show that remarkably, removal of ~1% of DP's sequence obliterates its ability to associate with desmosomes. Conversely, when linked to a foreign protein, as few as 86 NH2-terminal DP residues are sufficient to target to desmosomes efficiently. In in vitro overlay assays, the DP head specifically associates with itself and with desmocollin 1a (Dsc1a). In similar overlay assays, PP1 binds to DP and Dsc1a, and to a lesser extent, desmoglein 1 (Dsg1), while PG binds to Dsg1 and more weakly to Dsc1a and DP. Interestingly, like DP, PG and PP1 associate with epidermal keratins, although PG is considerably weaker in its ability to do so. As judged by overlay assays, the amino terminal head domain of type II keratins appears to have a special importance in establishing these connections. Taken together, our findings provide new insights into the complexities of the links between desmosomes and intermediate filaments (IFs). Our results suggest a model whereby at desmosome sites within dividing epidermal cells, DP and PG anchor to desmosomal cadherins and to each other, forming an ordered array of nontransmembrane proteins that then bind to keratin IFs. As epidermal cells differentiate, PP1 is added as a molecular reinforcement to the plaque, enhancing anchorage to IFs and accounting at least partially for the increase in numbers and stability of desmosomes in suprabasal cells.  相似文献   

17.
18.
19.
Phosphorylation of keratin intermediate filaments (IF) is known to affect their assembly state and organization; however, little is known about the mechanisms regulating keratin phosphorylation. In this study, we demonstrate that shear stress, but not stretch, causes disassembly of keratin IF in lung alveolar epithelial cells (AEC) and that this disassembly is regulated by protein kinase C delta-mediated phosphorylation of keratin 8 (K8) Ser-73. Specifically, in AEC subjected to shear stress, keratin IF are disassembled, as reflected by their increased solubility. In contrast, AEC subjected to stretch showed no changes in the state of assembly of IF. Pretreatment with the protein kinase C (PKC) inhibitor, bisindolymaleimide, prevents the increase in solubility of either K8 or its assembly partner K18 in shear-stressed AEC. Phosphoserine-specific antibodies demonstrate that K8 Ser-73 is phosphorylated in a time-dependent manner in shear-stressed AEC. Furthermore, we showed that shear stress activates PKC delta and that the PKC delta peptide antagonist, delta V1-1, significantly attenuates the shear stress-induced increase in keratin phosphorylation and solubility. These data suggested that shear stress mediates the phosphorylation of serine residues in K8, leading to the disassembly of IF in alveolar epithelial cells. Importantly, these data provided clues regarding a molecular link between mechanically induced signal transduction and alterations in cytoskeletal IF.  相似文献   

20.
High-risk human papillomaviruses, such as human papillomavirus type 16 (HPV16), are the primary cause of cervical cancer. The HPV16 E1=E4 protein associates with keratin intermediate filaments and causes network collapse when expressed in epithelial cells in vitro. Here, we show that keratin association and network reorganization also occur in vivo in low-grade cervical neoplasia caused by HPV16. The 16E1=E4 protein binds to keratins directly and interacts strongly with keratin 18, a member of the type I intermediate-filament family. By contrast, 16E1=E4 bound only weakly to keratin 8, a type II intermediate-filament protein, and showed no detectable affinity for the type III protein, vimentin. The N-terminal 16 amino acids of the 16E1=E4 protein, which contains the YPLLXLL motif that is conserved among supergroup A viruses, were sufficient to target green fluorescent protein to the keratin network. When expressed in the SiHa cervical epithelial cell line, the full-length 16E1=E4 protein caused an almost total inhibition of keratin dynamics, despite the phosphorylation of keratin 18 at serine 33, which normally leads to 14-3-3-mediated keratin solubilization. Mutant 16E1=E4 proteins which lack the LLKLL motif, or which have lost amino acids from their C termini, and which were compromised in the ability to associate with keratins did not disturb normal keratin dynamics. 16E1=E4 was found to exist as dimers and hexamers, whereas a C-terminal deletion mutant (16E1=E4Delta87-92) existed as monomers and formed multimeric structures only poorly. Considered together, our results suggest that by associating with keratins through its N terminus, and by associating with itself through its C terminus, 16E1=E4 may act as a keratin cross-linker and prevent the movement of keratins between the soluble and insoluble compartments. The increase in avidity associated with multimeric binding may contribute to the ability of 16E1=E4 to sequester its cellular targets in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号